Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular

Detalhes bibliográficos
Autor(a) principal: Schiaber, Ziani de Souza
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/138237
Resumo: GaN nanowires and nanocolumns stand out due to the low defect density and high structural and optical quality compared to the corresponding thin films. The understanding of the formation mechanism of the different GaN structures using different techniques is critical to improving the manufacture of the electronic and optoelectronic devices based on this material. This thesis focuses on the preparation and characterization of GaN nanowires and nanostructures. The molecular bem epitaxy (MBE) and magnetron sputtering epitaxy (MSE) were used and different substrates were tested. Concerning GaN nanocrystals and nanocolumns obtained by MSE, optimization of the deposition conditions was necessary in order to produce non-coalesced GaN nanostructures. The best conditions were: pure N2 atmosphere, silicon substrate, and a perforated screen placed between the target and the substrate holder. The later produced differences on the Ga flow to the substrate, inducing the formation of different structures, depending on the position of growth spot. Samples were characterized using scanning electron microscopy, X-ray diffraction and photoluminescence spectroscopy. Nanocolumns were observed, mainly in sites corresponding to a disc of radius 2 mm from the geometric centre of the hole. The columns were oriented with the GaN [001] axis perpendicular to the Si (111) substrate surface, situation which is commonly found in GaN nanowires deposited by MBE. Regarding the nanowires prepared by MBE technique, in order to inhibit coalescence and to investigate the possibility of controlling the numerical density of nanowires, we have used Si cap layers on top of the Ga-polar GaN buffer layer. Different amounts of Si have been deposited, and the density of the nanowires was significantly modified. With Si layer thickness of 0.60 nm, the nanowires had an average density of 108 nanowires/cm2 . Lower thickness did not result in the growth of nanowires, but higher thickness caused a high density of nanowires of 1010 nanowires/cm2 which remained constant regardless of the deposition time. X-ray diffraction pole figures showed that the different nanowires grown up in oriented fashion in a crystalline layer of Si or SixNy. Etching with KOH indicated N polarity for the grown nanowires, in spite of the fact that they were grown using Ga polar GaN buffer layers. Measurements by convergent beam electron diffraction confirmed the N polarity to the nanowire and Ga polarity for the buffer layer. Aspects obtained in this study allowed a better understanding of nucleation and nanostructures formation mechanisms of GaN, enabling greater control of the characteristics of these nanostructures produced.
id UNSP_8dd73737e53c1623a2d1076f082ac09c
oai_identifier_str oai:repositorio.unesp.br:11449/138237
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecularGaN nanostructures grown by magnetron sputtering epitaxy and molecular beam epitaxy techniquesGaNNanostructuresNanowiresMagnetron sputtering epitaxyMolecular beam epitaxyGaNNanoestruturasNanofiosEpitaxia por magnetron sputteringEpitaxia por feixe molecularGaN nanowires and nanocolumns stand out due to the low defect density and high structural and optical quality compared to the corresponding thin films. The understanding of the formation mechanism of the different GaN structures using different techniques is critical to improving the manufacture of the electronic and optoelectronic devices based on this material. This thesis focuses on the preparation and characterization of GaN nanowires and nanostructures. The molecular bem epitaxy (MBE) and magnetron sputtering epitaxy (MSE) were used and different substrates were tested. Concerning GaN nanocrystals and nanocolumns obtained by MSE, optimization of the deposition conditions was necessary in order to produce non-coalesced GaN nanostructures. The best conditions were: pure N2 atmosphere, silicon substrate, and a perforated screen placed between the target and the substrate holder. The later produced differences on the Ga flow to the substrate, inducing the formation of different structures, depending on the position of growth spot. Samples were characterized using scanning electron microscopy, X-ray diffraction and photoluminescence spectroscopy. Nanocolumns were observed, mainly in sites corresponding to a disc of radius 2 mm from the geometric centre of the hole. The columns were oriented with the GaN [001] axis perpendicular to the Si (111) substrate surface, situation which is commonly found in GaN nanowires deposited by MBE. Regarding the nanowires prepared by MBE technique, in order to inhibit coalescence and to investigate the possibility of controlling the numerical density of nanowires, we have used Si cap layers on top of the Ga-polar GaN buffer layer. Different amounts of Si have been deposited, and the density of the nanowires was significantly modified. With Si layer thickness of 0.60 nm, the nanowires had an average density of 108 nanowires/cm2 . Lower thickness did not result in the growth of nanowires, but higher thickness caused a high density of nanowires of 1010 nanowires/cm2 which remained constant regardless of the deposition time. X-ray diffraction pole figures showed that the different nanowires grown up in oriented fashion in a crystalline layer of Si or SixNy. Etching with KOH indicated N polarity for the grown nanowires, in spite of the fact that they were grown using Ga polar GaN buffer layers. Measurements by convergent beam electron diffraction confirmed the N polarity to the nanowire and Ga polarity for the buffer layer. Aspects obtained in this study allowed a better understanding of nucleation and nanostructures formation mechanisms of GaN, enabling greater control of the characteristics of these nanostructures produced.Nanosestruturas de GaN destacam-se devido à baixa densidade de defeitos e consequentemente alta qualidade estrutural e óptica quando comparadas ao material em forma de filme. O entendimento dos mecanismos de formação de nanofios e nanocolunas de GaN por diferentes técnicas é fundamental do ponto de vista da ciência básica e também para o aprimoramento da fabricação de dispositivos eletrônicos e optoeletrônicos baseados nesse material. Neste trabalho discorre-se sobre a preparação e caracterização de nanofios e nanoestruturas de GaN pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular em diferentes tipos de substratos. Pela técnica de epitaxia por magnetron sputtering foram obtidos nanocristais e nanocolunas de GaN, além de uma região com camada compacta. Visando criar uma atmosfera propícia para o crescimento de nanoestruturas de GaN não coalescida, atmosfera de N2 puro e um anteparo, situado entre o alvo e o porta-substratos, foram utilizados. O anteparo causou diferença no fluxo incidente de gálio no substrato, ocasionando a formação de diferentes tipos de estruturas. A caracterização das amostras se deu principalmente através de medidas de microscopia eletrônica de varredura, difração de raios X e espectroscopia de fotoluminescência. As nanocolunas, de 220 nm de altura, foram formadas na região distante 2 mm do centro da sombra geométrica do orifício do anteparo e apresentaram orientação [001] perpendicular ao substrato, comumente encontrada em nanofios de GaN depositados por MBE. Em relação aos nanofios obtidos pela técnica de MBE, investigou-se a possibilidade de controlar a densidade de nanofios através de uma camada de Si sobre o GaN–Ga polar visando inibir a coalescência. Diferentes quantidades de Si foram depositadas e a densidade dos nanofios foi diferenciada significativamente. Os nanofios apresentaram densidade média de 108 nanofios/cm2 com 0,60 nm de espessura da camada de Si. Espessuras menores não resultaram no crescimento de nanofios, porém espessuras superiores causaram uma alta densidade de nanofios de 1010 nanofios/cm2 que permaneceu constante, independentemente do tempo de deposição. Medidas de polo por difração de raios X evidenciaram que os nanofios nuclearam-se orientados e em uma camada cristalina de Si ou SixNy. Experimentos de ataque químico com KOH indicaram a polaridade N para o nanofio e as medidas de difração por feixe convergente confirmaram a polaridade de N para o nanofio e Ga para a buffer layer. Os resultados obtidos neste trabalho permitiram um melhor entendimento da nucleação e dos mecanismos de formação de nanoestruturas de GaN, viabilizando maior controle das características dessas nanoestruturas produzidas.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2011/22664-2FAPESP: 2013/25625-3Universidade Estadual Paulista (Unesp)Silva, José Humberto Dias da [UNESP]Universidade Estadual Paulista (Unesp)Schiaber, Ziani de Souza2016-05-04T19:24:06Z2016-05-04T19:24:06Z2016-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/13823700087216033004056083P71134426200935790porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2023-10-02T06:05:41Zoai:repositorio.unesp.br:11449/138237Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462023-10-02T06:05:41Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
GaN nanostructures grown by magnetron sputtering epitaxy and molecular beam epitaxy techniques
title Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
spellingShingle Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
Schiaber, Ziani de Souza
GaN
Nanostructures
Nanowires
Magnetron sputtering epitaxy
Molecular beam epitaxy
GaN
Nanoestruturas
Nanofios
Epitaxia por magnetron sputtering
Epitaxia por feixe molecular
title_short Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
title_full Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
title_fullStr Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
title_full_unstemmed Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
title_sort Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular
author Schiaber, Ziani de Souza
author_facet Schiaber, Ziani de Souza
author_role author
dc.contributor.none.fl_str_mv Silva, José Humberto Dias da [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Schiaber, Ziani de Souza
dc.subject.por.fl_str_mv GaN
Nanostructures
Nanowires
Magnetron sputtering epitaxy
Molecular beam epitaxy
GaN
Nanoestruturas
Nanofios
Epitaxia por magnetron sputtering
Epitaxia por feixe molecular
topic GaN
Nanostructures
Nanowires
Magnetron sputtering epitaxy
Molecular beam epitaxy
GaN
Nanoestruturas
Nanofios
Epitaxia por magnetron sputtering
Epitaxia por feixe molecular
description GaN nanowires and nanocolumns stand out due to the low defect density and high structural and optical quality compared to the corresponding thin films. The understanding of the formation mechanism of the different GaN structures using different techniques is critical to improving the manufacture of the electronic and optoelectronic devices based on this material. This thesis focuses on the preparation and characterization of GaN nanowires and nanostructures. The molecular bem epitaxy (MBE) and magnetron sputtering epitaxy (MSE) were used and different substrates were tested. Concerning GaN nanocrystals and nanocolumns obtained by MSE, optimization of the deposition conditions was necessary in order to produce non-coalesced GaN nanostructures. The best conditions were: pure N2 atmosphere, silicon substrate, and a perforated screen placed between the target and the substrate holder. The later produced differences on the Ga flow to the substrate, inducing the formation of different structures, depending on the position of growth spot. Samples were characterized using scanning electron microscopy, X-ray diffraction and photoluminescence spectroscopy. Nanocolumns were observed, mainly in sites corresponding to a disc of radius 2 mm from the geometric centre of the hole. The columns were oriented with the GaN [001] axis perpendicular to the Si (111) substrate surface, situation which is commonly found in GaN nanowires deposited by MBE. Regarding the nanowires prepared by MBE technique, in order to inhibit coalescence and to investigate the possibility of controlling the numerical density of nanowires, we have used Si cap layers on top of the Ga-polar GaN buffer layer. Different amounts of Si have been deposited, and the density of the nanowires was significantly modified. With Si layer thickness of 0.60 nm, the nanowires had an average density of 108 nanowires/cm2 . Lower thickness did not result in the growth of nanowires, but higher thickness caused a high density of nanowires of 1010 nanowires/cm2 which remained constant regardless of the deposition time. X-ray diffraction pole figures showed that the different nanowires grown up in oriented fashion in a crystalline layer of Si or SixNy. Etching with KOH indicated N polarity for the grown nanowires, in spite of the fact that they were grown using Ga polar GaN buffer layers. Measurements by convergent beam electron diffraction confirmed the N polarity to the nanowire and Ga polarity for the buffer layer. Aspects obtained in this study allowed a better understanding of nucleation and nanostructures formation mechanisms of GaN, enabling greater control of the characteristics of these nanostructures produced.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-04T19:24:06Z
2016-05-04T19:24:06Z
2016-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/138237
000872160
33004056083P7
1134426200935790
url http://hdl.handle.net/11449/138237
identifier_str_mv 000872160
33004056083P7
1134426200935790
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826303473715511296