Uniform dynamics of partially damped semilinear Bresse systems

Detalhes bibliográficos
Autor(a) principal: Araújo, Rawlilson O. [UNESP]
Data de Publicação: 2022
Outros Autores: Ma, To Fu, Marinho, Sheyla S., Seminario-Huertas, Paulo N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/00036811.2022.2122449
http://hdl.handle.net/11449/245927
Resumo: This paper is concerned with the Bresse system that arises in the modeling of arched beams. It is given by a system of three coupled wave equations that reduces to the well-known Timoshenko model when the arch curvature is zero. In a context of nonlinear elastic foundation, we establish the existence of smooth finite-dimensional global attractors, by adding dissipation mechanism in only one of its equations. In addition, we study the uniform boundedness of longtime dynamics with respect to the curvature parameter. These results have not been considered for partially damped semilinear Bresse or Timoshenko systems.
id UNSP_8fdff6b3fc8fd7edf483c53d2580a339
oai_identifier_str oai:repositorio.unesp.br:11449/245927
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Uniform dynamics of partially damped semilinear Bresse systemsBresse–Timoshenkogradient systemsquasi-stabilitySmooth global attractorsThis paper is concerned with the Bresse system that arises in the modeling of arched beams. It is given by a system of three coupled wave equations that reduces to the well-known Timoshenko model when the arch curvature is zero. In a context of nonlinear elastic foundation, we establish the existence of smooth finite-dimensional global attractors, by adding dissipation mechanism in only one of its equations. In addition, we study the uniform boundedness of longtime dynamics with respect to the curvature parameter. These results have not been considered for partially damped semilinear Bresse or Timoshenko systems.Institute of Geosciences and Exact Sciences Sao Paulo State University (UNESP)Department of Mathematics University of BrasíliaInstitute of Geosciences and Exact Sciences Sao Paulo State University (UNESP)Universidade Estadual Paulista (UNESP)University of BrasíliaAraújo, Rawlilson O. [UNESP]Ma, To FuMarinho, Sheyla S.Seminario-Huertas, Paulo N.2023-07-29T12:27:00Z2023-07-29T12:27:00Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1080/00036811.2022.2122449Applicable Analysis.1563-504X0003-6811http://hdl.handle.net/11449/24592710.1080/00036811.2022.21224492-s2.0-85138242998Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplicable Analysisinfo:eu-repo/semantics/openAccess2023-07-29T12:27:00Zoai:repositorio.unesp.br:11449/245927Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:38:27.071441Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Uniform dynamics of partially damped semilinear Bresse systems
title Uniform dynamics of partially damped semilinear Bresse systems
spellingShingle Uniform dynamics of partially damped semilinear Bresse systems
Araújo, Rawlilson O. [UNESP]
Bresse–Timoshenko
gradient systems
quasi-stability
Smooth global attractors
title_short Uniform dynamics of partially damped semilinear Bresse systems
title_full Uniform dynamics of partially damped semilinear Bresse systems
title_fullStr Uniform dynamics of partially damped semilinear Bresse systems
title_full_unstemmed Uniform dynamics of partially damped semilinear Bresse systems
title_sort Uniform dynamics of partially damped semilinear Bresse systems
author Araújo, Rawlilson O. [UNESP]
author_facet Araújo, Rawlilson O. [UNESP]
Ma, To Fu
Marinho, Sheyla S.
Seminario-Huertas, Paulo N.
author_role author
author2 Ma, To Fu
Marinho, Sheyla S.
Seminario-Huertas, Paulo N.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
University of Brasília
dc.contributor.author.fl_str_mv Araújo, Rawlilson O. [UNESP]
Ma, To Fu
Marinho, Sheyla S.
Seminario-Huertas, Paulo N.
dc.subject.por.fl_str_mv Bresse–Timoshenko
gradient systems
quasi-stability
Smooth global attractors
topic Bresse–Timoshenko
gradient systems
quasi-stability
Smooth global attractors
description This paper is concerned with the Bresse system that arises in the modeling of arched beams. It is given by a system of three coupled wave equations that reduces to the well-known Timoshenko model when the arch curvature is zero. In a context of nonlinear elastic foundation, we establish the existence of smooth finite-dimensional global attractors, by adding dissipation mechanism in only one of its equations. In addition, we study the uniform boundedness of longtime dynamics with respect to the curvature parameter. These results have not been considered for partially damped semilinear Bresse or Timoshenko systems.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-07-29T12:27:00Z
2023-07-29T12:27:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/00036811.2022.2122449
Applicable Analysis.
1563-504X
0003-6811
http://hdl.handle.net/11449/245927
10.1080/00036811.2022.2122449
2-s2.0-85138242998
url http://dx.doi.org/10.1080/00036811.2022.2122449
http://hdl.handle.net/11449/245927
identifier_str_mv Applicable Analysis.
1563-504X
0003-6811
10.1080/00036811.2022.2122449
2-s2.0-85138242998
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applicable Analysis
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128393492824064