Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons

Detalhes bibliográficos
Autor(a) principal: Correa, J. H.
Data de Publicação: 2020
Outros Autores: Dias, A. C., Villegas-Lelovsky, L. [UNESP], Fu, Jiyong, Chico, Leonor, Qu, Fanyao
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevB.101.195422
http://hdl.handle.net/11449/228808
Resumo: We report anisotropic spin polarization of edge currents in MoS2 and WS2 monolayer zigzag nanoribbons (ZNRs) deposited on either nonmagnetic or ferromagnetic insulator substrates. We employ an 11-band tight-binding model to calculate the electronic band structures of transition metal dichalcogenide (TMDC) monolayers and their corresponding nanoribbons in the presence of Rashba spin-orbit coupling (RSOC) and magnetic proximity effect produced by ferromagnetic substrate. We adopt the nonequilibrium Green's function method together with Landauer-Büttiker formalism to study the quantum transport behavior stemming from the edge states of ZNRs. We demonstrate that the spin-polarized edge current can be generated in both MoS2 and WS2 ZNRs with RSOC. We find that the spin polarization spreads out in all three directions. This is in stark contrast to what occurs in zigzag graphene nanoribbons, for which the polarization only exists in the transverse direction (across the width of ribbons). In addition, the spin polarization direction strongly depends on the strength of the intrinsic SOC component. The interplay of Rashba and intrinsic SOC is crucial for the spin polarization of the currents in any spatial direction. For TMDCs with stronger intrinsic SOC such as in WS2 monolayer ZNRs, we observe that the spin polarization along the perpendicular direction to the plane of the ZNR can be as large as 90%. Moreover, the unusual anisotropy of the spin polarization can be further enhanced by the magnetic proximity effect. These results open up possibilities for the generation of tunable high-spin polarization currents in ZNRs without application of an external magnetic field.
id UNSP_92006dbca1fc7592995fe76f06ac9d7c
oai_identifier_str oai:repositorio.unesp.br:11449/228808
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbonsWe report anisotropic spin polarization of edge currents in MoS2 and WS2 monolayer zigzag nanoribbons (ZNRs) deposited on either nonmagnetic or ferromagnetic insulator substrates. We employ an 11-band tight-binding model to calculate the electronic band structures of transition metal dichalcogenide (TMDC) monolayers and their corresponding nanoribbons in the presence of Rashba spin-orbit coupling (RSOC) and magnetic proximity effect produced by ferromagnetic substrate. We adopt the nonequilibrium Green's function method together with Landauer-Büttiker formalism to study the quantum transport behavior stemming from the edge states of ZNRs. We demonstrate that the spin-polarized edge current can be generated in both MoS2 and WS2 ZNRs with RSOC. We find that the spin polarization spreads out in all three directions. This is in stark contrast to what occurs in zigzag graphene nanoribbons, for which the polarization only exists in the transverse direction (across the width of ribbons). In addition, the spin polarization direction strongly depends on the strength of the intrinsic SOC component. The interplay of Rashba and intrinsic SOC is crucial for the spin polarization of the currents in any spatial direction. For TMDCs with stronger intrinsic SOC such as in WS2 monolayer ZNRs, we observe that the spin polarization along the perpendicular direction to the plane of the ZNR can be as large as 90%. Moreover, the unusual anisotropy of the spin polarization can be further enhanced by the magnetic proximity effect. These results open up possibilities for the generation of tunable high-spin polarization currents in ZNRs without application of an external magnetic field.National Natural Science Foundation of ChinaDepartment of Physics Qufu Normal UniversityInstituto de Física Universidade de BrasíliaDepartamento de Física IGCE Universidade Estadual PaulistaDepartamento de Física Centro de Ciências Exatas e de Tecnologia Universidade Federal de São CarlosInstituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas, C/ Sor Juana Inés de la Cruz 3Departamento de Física IGCE Universidade Estadual PaulistaNational Natural Science Foundation of China: 11004120National Natural Science Foundation of China: 11874236Qufu Normal UniversityUniversidade de Brasília (UnB)Universidade Estadual Paulista (UNESP)Universidade Federal de São Carlos (UFSCar)Consejo Superior de Investigaciones CientíficasCorrea, J. H.Dias, A. C.Villegas-Lelovsky, L. [UNESP]Fu, JiyongChico, LeonorQu, Fanyao2022-04-29T08:28:51Z2022-04-29T08:28:51Z2020-05-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevB.101.195422Physical Review B, v. 101, n. 19, 2020.2469-99692469-9950http://hdl.handle.net/11449/22880810.1103/PhysRevB.101.1954222-s2.0-85085969347Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Binfo:eu-repo/semantics/openAccess2022-04-29T08:28:51Zoai:repositorio.unesp.br:11449/228808Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:02:13.910232Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
title Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
spellingShingle Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
Correa, J. H.
title_short Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
title_full Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
title_fullStr Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
title_full_unstemmed Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
title_sort Anisotropy of the spin-polarized edge current in monolayer transition metal dichalcogenide zigzag nanoribbons
author Correa, J. H.
author_facet Correa, J. H.
Dias, A. C.
Villegas-Lelovsky, L. [UNESP]
Fu, Jiyong
Chico, Leonor
Qu, Fanyao
author_role author
author2 Dias, A. C.
Villegas-Lelovsky, L. [UNESP]
Fu, Jiyong
Chico, Leonor
Qu, Fanyao
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Qufu Normal University
Universidade de Brasília (UnB)
Universidade Estadual Paulista (UNESP)
Universidade Federal de São Carlos (UFSCar)
Consejo Superior de Investigaciones Científicas
dc.contributor.author.fl_str_mv Correa, J. H.
Dias, A. C.
Villegas-Lelovsky, L. [UNESP]
Fu, Jiyong
Chico, Leonor
Qu, Fanyao
description We report anisotropic spin polarization of edge currents in MoS2 and WS2 monolayer zigzag nanoribbons (ZNRs) deposited on either nonmagnetic or ferromagnetic insulator substrates. We employ an 11-band tight-binding model to calculate the electronic band structures of transition metal dichalcogenide (TMDC) monolayers and their corresponding nanoribbons in the presence of Rashba spin-orbit coupling (RSOC) and magnetic proximity effect produced by ferromagnetic substrate. We adopt the nonequilibrium Green's function method together with Landauer-Büttiker formalism to study the quantum transport behavior stemming from the edge states of ZNRs. We demonstrate that the spin-polarized edge current can be generated in both MoS2 and WS2 ZNRs with RSOC. We find that the spin polarization spreads out in all three directions. This is in stark contrast to what occurs in zigzag graphene nanoribbons, for which the polarization only exists in the transverse direction (across the width of ribbons). In addition, the spin polarization direction strongly depends on the strength of the intrinsic SOC component. The interplay of Rashba and intrinsic SOC is crucial for the spin polarization of the currents in any spatial direction. For TMDCs with stronger intrinsic SOC such as in WS2 monolayer ZNRs, we observe that the spin polarization along the perpendicular direction to the plane of the ZNR can be as large as 90%. Moreover, the unusual anisotropy of the spin polarization can be further enhanced by the magnetic proximity effect. These results open up possibilities for the generation of tunable high-spin polarization currents in ZNRs without application of an external magnetic field.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-15
2022-04-29T08:28:51Z
2022-04-29T08:28:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevB.101.195422
Physical Review B, v. 101, n. 19, 2020.
2469-9969
2469-9950
http://hdl.handle.net/11449/228808
10.1103/PhysRevB.101.195422
2-s2.0-85085969347
url http://dx.doi.org/10.1103/PhysRevB.101.195422
http://hdl.handle.net/11449/228808
identifier_str_mv Physical Review B, v. 101, n. 19, 2020.
2469-9969
2469-9950
10.1103/PhysRevB.101.195422
2-s2.0-85085969347
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review B
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129483891277824