Efficient parametric adjustment of fuzzy inference system using unconstrained optimization

Detalhes bibliográficos
Autor(a) principal: Da Silva, Ivan Nunes
Data de Publicação: 2007
Outros Autores: Flauzino, Rogério Andrade [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-540-73007-1_49
http://hdl.handle.net/11449/70007
Resumo: This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
id UNSP_93b1b1d8e470e630d3e766f61b98399e
oai_identifier_str oai:repositorio.unesp.br:11449/70007
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Efficient parametric adjustment of fuzzy inference system using unconstrained optimizationFuzzy systemsSystem optimizationTuning algorithmComputer simulationConstrained optimizationError analysisParameter estimationTime series analysisFuzzy inferenceThis paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.University of São Paulo Department of Electrical Engineering, CP 359, CEP 13566.590, São Carlos, SPSão Paulo State University Department of Production Engineering, CP 473, CEP 17033.360, Bauru, SPSão Paulo State University Department of Production Engineering, CP 473, CEP 17033.360, Bauru, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Da Silva, Ivan NunesFlauzino, Rogério Andrade [UNESP]2014-05-27T11:22:39Z2014-05-27T11:22:39Z2007-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject399-406http://dx.doi.org/10.1007/978-3-540-73007-1_49Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 4507 LNCS, p. 399-406.0302-97431611-3349http://hdl.handle.net/11449/7000710.1007/978-3-540-73007-1_492-s2.0-38049162135Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-06-28T13:18:35Zoai:repositorio.unesp.br:11449/70007Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:59:57.726456Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
title Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
spellingShingle Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
Da Silva, Ivan Nunes
Fuzzy systems
System optimization
Tuning algorithm
Computer simulation
Constrained optimization
Error analysis
Parameter estimation
Time series analysis
Fuzzy inference
title_short Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
title_full Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
title_fullStr Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
title_full_unstemmed Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
title_sort Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
author Da Silva, Ivan Nunes
author_facet Da Silva, Ivan Nunes
Flauzino, Rogério Andrade [UNESP]
author_role author
author2 Flauzino, Rogério Andrade [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Da Silva, Ivan Nunes
Flauzino, Rogério Andrade [UNESP]
dc.subject.por.fl_str_mv Fuzzy systems
System optimization
Tuning algorithm
Computer simulation
Constrained optimization
Error analysis
Parameter estimation
Time series analysis
Fuzzy inference
topic Fuzzy systems
System optimization
Tuning algorithm
Computer simulation
Constrained optimization
Error analysis
Parameter estimation
Time series analysis
Fuzzy inference
description This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
publishDate 2007
dc.date.none.fl_str_mv 2007-12-01
2014-05-27T11:22:39Z
2014-05-27T11:22:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-540-73007-1_49
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 4507 LNCS, p. 399-406.
0302-9743
1611-3349
http://hdl.handle.net/11449/70007
10.1007/978-3-540-73007-1_49
2-s2.0-38049162135
url http://dx.doi.org/10.1007/978-3-540-73007-1_49
http://hdl.handle.net/11449/70007
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 4507 LNCS, p. 399-406.
0302-9743
1611-3349
10.1007/978-3-540-73007-1_49
2-s2.0-38049162135
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 399-406
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128734447796224