Efficient parametric adjustment of fuzzy inference system using unconstrained optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-540-73007-1_49 http://hdl.handle.net/11449/70007 |
Resumo: | This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007. |
id |
UNSP_93b1b1d8e470e630d3e766f61b98399e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/70007 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimizationFuzzy systemsSystem optimizationTuning algorithmComputer simulationConstrained optimizationError analysisParameter estimationTime series analysisFuzzy inferenceThis paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.University of São Paulo Department of Electrical Engineering, CP 359, CEP 13566.590, São Carlos, SPSão Paulo State University Department of Production Engineering, CP 473, CEP 17033.360, Bauru, SPSão Paulo State University Department of Production Engineering, CP 473, CEP 17033.360, Bauru, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Da Silva, Ivan NunesFlauzino, Rogério Andrade [UNESP]2014-05-27T11:22:39Z2014-05-27T11:22:39Z2007-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject399-406http://dx.doi.org/10.1007/978-3-540-73007-1_49Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 4507 LNCS, p. 399-406.0302-97431611-3349http://hdl.handle.net/11449/7000710.1007/978-3-540-73007-1_492-s2.0-38049162135Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-06-28T13:18:35Zoai:repositorio.unesp.br:11449/70007Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:59:57.726456Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization |
title |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization |
spellingShingle |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization Da Silva, Ivan Nunes Fuzzy systems System optimization Tuning algorithm Computer simulation Constrained optimization Error analysis Parameter estimation Time series analysis Fuzzy inference |
title_short |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization |
title_full |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization |
title_fullStr |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization |
title_full_unstemmed |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization |
title_sort |
Efficient parametric adjustment of fuzzy inference system using unconstrained optimization |
author |
Da Silva, Ivan Nunes |
author_facet |
Da Silva, Ivan Nunes Flauzino, Rogério Andrade [UNESP] |
author_role |
author |
author2 |
Flauzino, Rogério Andrade [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Da Silva, Ivan Nunes Flauzino, Rogério Andrade [UNESP] |
dc.subject.por.fl_str_mv |
Fuzzy systems System optimization Tuning algorithm Computer simulation Constrained optimization Error analysis Parameter estimation Time series analysis Fuzzy inference |
topic |
Fuzzy systems System optimization Tuning algorithm Computer simulation Constrained optimization Error analysis Parameter estimation Time series analysis Fuzzy inference |
description |
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12-01 2014-05-27T11:22:39Z 2014-05-27T11:22:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-540-73007-1_49 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 4507 LNCS, p. 399-406. 0302-9743 1611-3349 http://hdl.handle.net/11449/70007 10.1007/978-3-540-73007-1_49 2-s2.0-38049162135 |
url |
http://dx.doi.org/10.1007/978-3-540-73007-1_49 http://hdl.handle.net/11449/70007 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 4507 LNCS, p. 399-406. 0302-9743 1611-3349 10.1007/978-3-540-73007-1_49 2-s2.0-38049162135 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
399-406 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128734447796224 |