A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.dental.2022.06.015 http://hdl.handle.net/11449/240326 |
Resumo: | Objective: This study evaluated the microshear bond strength of a resin cement to Y-TZP after different methods of TiO2 nanotubes (nTiO2) incorporation on pre-sintered Y-TZP surfaces. Methods: nTiO2 were synthesized and incorporated on Y-TZP slices as follows (n = 15): 1) nTiO2 mixed with isopropyl alcohol/manual application (MAl); 2) nTiO2 mixed with acetone/manual application (MAc); 3) nTiO2 mixed with isopropyl alcohol/high-pressure vacuum application (HPVAl); 4) nTiO2 mixed with acetone/high-pressure vacuum application (HPVAc). As controls, surfaces were sandblasted with Al2O3 (OX) or Rocatec silicatization (ROC). All ceramics were sintered after nTiO2 incorporation. Surface treatments of OX and ROC were made after sintering. Surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Resin composite cylinders (1.40 mm diameter and 1 mm height) were cemented with a resin cement, stored in water at 37 °C for 24 h and thermocycled for 10 000 cycles before microshear bond strength evaluation. Data were analyzed with one-way ANOVA and Games-Howell (α = 0.05), and fracture analysis was performed using a stereomicroscope. Results: EDS confirmed the presence of TiO2 on treated Y-TZP. The confocal analysis showed higher roughness for HPVAc and OX. There were significant differences between surface treatments (p < 0.001). HPVAl (22.96 ± 10.3), OX (34.16 ± 7.9) and ROC (27.71 ± 9.4) showed higher microshear bond strengths and were statistically similar (p > 0.05). MAC showed intermediary values, and HPVAc and MAl presented decreased bond strength, with a high percentage of premature debonding. Conclusion: High-pressure vacuum application of nTiO2 mixed with isopropyl alcohol was able to produce bond strength values compared to conventional air abrasion and Rocatec silicatization. Significance: The infiltration of TiO2 nanostructures on the pre-sintered Y-TZP is an interesting approach that can improve bond strength without the need of sandblasting methods. |
id |
UNSP_93b56a8b8de2252303b747c6d5f5a69f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/240326 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZPDental ceramicsNanotechnologyShear bond strengthZirconiaObjective: This study evaluated the microshear bond strength of a resin cement to Y-TZP after different methods of TiO2 nanotubes (nTiO2) incorporation on pre-sintered Y-TZP surfaces. Methods: nTiO2 were synthesized and incorporated on Y-TZP slices as follows (n = 15): 1) nTiO2 mixed with isopropyl alcohol/manual application (MAl); 2) nTiO2 mixed with acetone/manual application (MAc); 3) nTiO2 mixed with isopropyl alcohol/high-pressure vacuum application (HPVAl); 4) nTiO2 mixed with acetone/high-pressure vacuum application (HPVAc). As controls, surfaces were sandblasted with Al2O3 (OX) or Rocatec silicatization (ROC). All ceramics were sintered after nTiO2 incorporation. Surface treatments of OX and ROC were made after sintering. Surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Resin composite cylinders (1.40 mm diameter and 1 mm height) were cemented with a resin cement, stored in water at 37 °C for 24 h and thermocycled for 10 000 cycles before microshear bond strength evaluation. Data were analyzed with one-way ANOVA and Games-Howell (α = 0.05), and fracture analysis was performed using a stereomicroscope. Results: EDS confirmed the presence of TiO2 on treated Y-TZP. The confocal analysis showed higher roughness for HPVAc and OX. There were significant differences between surface treatments (p < 0.001). HPVAl (22.96 ± 10.3), OX (34.16 ± 7.9) and ROC (27.71 ± 9.4) showed higher microshear bond strengths and were statistically similar (p > 0.05). MAC showed intermediary values, and HPVAc and MAl presented decreased bond strength, with a high percentage of premature debonding. Conclusion: High-pressure vacuum application of nTiO2 mixed with isopropyl alcohol was able to produce bond strength values compared to conventional air abrasion and Rocatec silicatization. Significance: The infiltration of TiO2 nanostructures on the pre-sintered Y-TZP is an interesting approach that can improve bond strength without the need of sandblasting methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Operative Dentistry Endodontics and Dental Materials Bauru School of Dentistry University of São PauloDepartment of Physics School of Sciences São Paulo State UniversityDepartment of Oral Rehabilitation at Medical University of South Carolina James B. Edwards College of Dental MedicineDepartment of Physics School of Sciences São Paulo State UniversityFAPESP: 2015/25 827–0FAPESP: 2019/05427-9Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)James B. Edwards College of Dental MedicineMezarina-Kanashiro, Franco NaokiBronze-Uhle, Erika Soares [UNESP]Rizzante, Fabio Antonio PiolaLisboa-Filho, Paulo Noronha [UNESP]Borges, Ana Flavia SanchesFuruse, Adilson Yoshio2023-03-01T20:12:03Z2023-03-01T20:12:03Z2022-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlee220-e230http://dx.doi.org/10.1016/j.dental.2022.06.015Dental Materials, v. 38, n. 8, p. e220-e230, 2022.0109-5641http://hdl.handle.net/11449/24032610.1016/j.dental.2022.06.0152-s2.0-85132713590Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengDental Materialsinfo:eu-repo/semantics/openAccess2023-03-01T20:12:04Zoai:repositorio.unesp.br:11449/240326Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:49:16.781159Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP |
title |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP |
spellingShingle |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP Mezarina-Kanashiro, Franco Naoki Dental ceramics Nanotechnology Shear bond strength Zirconia |
title_short |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP |
title_full |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP |
title_fullStr |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP |
title_full_unstemmed |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP |
title_sort |
A new technique for incorporation of TiO2 nanotubes on a pre-sintered Y-TZP and its effect on bond strength as compared to conventional air-borne particle abrasion and silicatization TiO2 nanotubes application on pre-sintered Y-TZP |
author |
Mezarina-Kanashiro, Franco Naoki |
author_facet |
Mezarina-Kanashiro, Franco Naoki Bronze-Uhle, Erika Soares [UNESP] Rizzante, Fabio Antonio Piola Lisboa-Filho, Paulo Noronha [UNESP] Borges, Ana Flavia Sanches Furuse, Adilson Yoshio |
author_role |
author |
author2 |
Bronze-Uhle, Erika Soares [UNESP] Rizzante, Fabio Antonio Piola Lisboa-Filho, Paulo Noronha [UNESP] Borges, Ana Flavia Sanches Furuse, Adilson Yoshio |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) James B. Edwards College of Dental Medicine |
dc.contributor.author.fl_str_mv |
Mezarina-Kanashiro, Franco Naoki Bronze-Uhle, Erika Soares [UNESP] Rizzante, Fabio Antonio Piola Lisboa-Filho, Paulo Noronha [UNESP] Borges, Ana Flavia Sanches Furuse, Adilson Yoshio |
dc.subject.por.fl_str_mv |
Dental ceramics Nanotechnology Shear bond strength Zirconia |
topic |
Dental ceramics Nanotechnology Shear bond strength Zirconia |
description |
Objective: This study evaluated the microshear bond strength of a resin cement to Y-TZP after different methods of TiO2 nanotubes (nTiO2) incorporation on pre-sintered Y-TZP surfaces. Methods: nTiO2 were synthesized and incorporated on Y-TZP slices as follows (n = 15): 1) nTiO2 mixed with isopropyl alcohol/manual application (MAl); 2) nTiO2 mixed with acetone/manual application (MAc); 3) nTiO2 mixed with isopropyl alcohol/high-pressure vacuum application (HPVAl); 4) nTiO2 mixed with acetone/high-pressure vacuum application (HPVAc). As controls, surfaces were sandblasted with Al2O3 (OX) or Rocatec silicatization (ROC). All ceramics were sintered after nTiO2 incorporation. Surface treatments of OX and ROC were made after sintering. Surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Resin composite cylinders (1.40 mm diameter and 1 mm height) were cemented with a resin cement, stored in water at 37 °C for 24 h and thermocycled for 10 000 cycles before microshear bond strength evaluation. Data were analyzed with one-way ANOVA and Games-Howell (α = 0.05), and fracture analysis was performed using a stereomicroscope. Results: EDS confirmed the presence of TiO2 on treated Y-TZP. The confocal analysis showed higher roughness for HPVAc and OX. There were significant differences between surface treatments (p < 0.001). HPVAl (22.96 ± 10.3), OX (34.16 ± 7.9) and ROC (27.71 ± 9.4) showed higher microshear bond strengths and were statistically similar (p > 0.05). MAC showed intermediary values, and HPVAc and MAl presented decreased bond strength, with a high percentage of premature debonding. Conclusion: High-pressure vacuum application of nTiO2 mixed with isopropyl alcohol was able to produce bond strength values compared to conventional air abrasion and Rocatec silicatization. Significance: The infiltration of TiO2 nanostructures on the pre-sintered Y-TZP is an interesting approach that can improve bond strength without the need of sandblasting methods. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-01 2023-03-01T20:12:03Z 2023-03-01T20:12:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.dental.2022.06.015 Dental Materials, v. 38, n. 8, p. e220-e230, 2022. 0109-5641 http://hdl.handle.net/11449/240326 10.1016/j.dental.2022.06.015 2-s2.0-85132713590 |
url |
http://dx.doi.org/10.1016/j.dental.2022.06.015 http://hdl.handle.net/11449/240326 |
identifier_str_mv |
Dental Materials, v. 38, n. 8, p. e220-e230, 2022. 0109-5641 10.1016/j.dental.2022.06.015 2-s2.0-85132713590 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Dental Materials |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
e220-e230 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129361610539008 |