Monitoring bivariate processes with synthetic control charts based on sample ranges

Detalhes bibliográficos
Autor(a) principal: MacHado, Marcela [UNESP]
Data de Publicação: 2023
Outros Autores: Costa, Antonio, Simões, Felipe Domingues [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/1806-9649-2022v29e6822
http://hdl.handle.net/11449/248952
Resumo: The RMAX chart was proposed to control the covariance matrix of two quality characteristics. The monitoring statistic of the RMAX chart is the maximum of two standardized sample ranges from bivariate observations of two quality characteristics. In this article, we investigate the performance of two synthetic RMAX charts. The first synthetic chart signals when a second point, not far from the first one, falls beyond the warning limit. The second synthetic chart additionally signals when a sample point falls beyond the control limit. The performance of the synthetic RMAX charts are compared with the performance of the standard RMAX chart and the generalized variance |S| chart. The proposed charts are the best option to detect moderate or even small changes in the covariance matrix. To detect large changes in the covariance matrix, additional run rules are not necessary.
id UNSP_95555ea668ab7efb0a8f18db4e12f748
oai_identifier_str oai:repositorio.unesp.br:11449/248952
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Monitoring bivariate processes with synthetic control charts based on sample rangesGráficos de controle baseado em amplitudes amostrais e regras especiais de decisão para o monitoramento de processos bivariadosBivariate processesRMAX chartSynthetic run rulesThe RMAX chart was proposed to control the covariance matrix of two quality characteristics. The monitoring statistic of the RMAX chart is the maximum of two standardized sample ranges from bivariate observations of two quality characteristics. In this article, we investigate the performance of two synthetic RMAX charts. The first synthetic chart signals when a second point, not far from the first one, falls beyond the warning limit. The second synthetic chart additionally signals when a sample point falls beyond the control limit. The performance of the synthetic RMAX charts are compared with the performance of the standard RMAX chart and the generalized variance |S| chart. The proposed charts are the best option to detect moderate or even small changes in the covariance matrix. To detect large changes in the covariance matrix, additional run rules are not necessary.Universidade Estadual Paulista - UNESP Faculdade de Engenharia e Ciências - FEG Departamento de Produção, SPUniversidade Federal de Itajubá - UNIFEI Instituto de Engenharia de Produção e Gestão - IEPG, MGUniversidade Estadual Paulista - UNESP Faculdade de Engenharia e Ciências - FEG Departamento de Produção, SPUniversidade Estadual Paulista (UNESP)Instituto de Engenharia de Produção e Gestão - IEPGMacHado, Marcela [UNESP]Costa, AntonioSimões, Felipe Domingues [UNESP]2023-07-29T13:58:17Z2023-07-29T13:58:17Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1590/1806-9649-2022v29e6822Gestao e Producao, v. 30.1806-96490104-530Xhttp://hdl.handle.net/11449/24895210.1590/1806-9649-2022v29e68222-s2.0-85161291584Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGestao e Producaoinfo:eu-repo/semantics/openAccess2024-07-02T17:37:20Zoai:repositorio.unesp.br:11449/248952Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-02T17:37:20Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Monitoring bivariate processes with synthetic control charts based on sample ranges
Gráficos de controle baseado em amplitudes amostrais e regras especiais de decisão para o monitoramento de processos bivariados
title Monitoring bivariate processes with synthetic control charts based on sample ranges
spellingShingle Monitoring bivariate processes with synthetic control charts based on sample ranges
MacHado, Marcela [UNESP]
Bivariate processes
RMAX chart
Synthetic run rules
title_short Monitoring bivariate processes with synthetic control charts based on sample ranges
title_full Monitoring bivariate processes with synthetic control charts based on sample ranges
title_fullStr Monitoring bivariate processes with synthetic control charts based on sample ranges
title_full_unstemmed Monitoring bivariate processes with synthetic control charts based on sample ranges
title_sort Monitoring bivariate processes with synthetic control charts based on sample ranges
author MacHado, Marcela [UNESP]
author_facet MacHado, Marcela [UNESP]
Costa, Antonio
Simões, Felipe Domingues [UNESP]
author_role author
author2 Costa, Antonio
Simões, Felipe Domingues [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Instituto de Engenharia de Produção e Gestão - IEPG
dc.contributor.author.fl_str_mv MacHado, Marcela [UNESP]
Costa, Antonio
Simões, Felipe Domingues [UNESP]
dc.subject.por.fl_str_mv Bivariate processes
RMAX chart
Synthetic run rules
topic Bivariate processes
RMAX chart
Synthetic run rules
description The RMAX chart was proposed to control the covariance matrix of two quality characteristics. The monitoring statistic of the RMAX chart is the maximum of two standardized sample ranges from bivariate observations of two quality characteristics. In this article, we investigate the performance of two synthetic RMAX charts. The first synthetic chart signals when a second point, not far from the first one, falls beyond the warning limit. The second synthetic chart additionally signals when a sample point falls beyond the control limit. The performance of the synthetic RMAX charts are compared with the performance of the standard RMAX chart and the generalized variance |S| chart. The proposed charts are the best option to detect moderate or even small changes in the covariance matrix. To detect large changes in the covariance matrix, additional run rules are not necessary.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:58:17Z
2023-07-29T13:58:17Z
2023-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1806-9649-2022v29e6822
Gestao e Producao, v. 30.
1806-9649
0104-530X
http://hdl.handle.net/11449/248952
10.1590/1806-9649-2022v29e6822
2-s2.0-85161291584
url http://dx.doi.org/10.1590/1806-9649-2022v29e6822
http://hdl.handle.net/11449/248952
identifier_str_mv Gestao e Producao, v. 30.
1806-9649
0104-530X
10.1590/1806-9649-2022v29e6822
2-s2.0-85161291584
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Gestao e Producao
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826304679120732160