Entropy-Based Filter Selection in CNNs Applied to Text Classification

Detalhes bibliográficos
Autor(a) principal: Bezerra de Menezes Rodrigues, Rafael [UNESP]
Data de Publicação: 2020
Outros Autores: Marcílio Júnior, Wilson Estécio [UNESP], Eler, Danilo Medeiros [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-030-61377-8_34
http://hdl.handle.net/11449/208080
Resumo: Filter selection in convolutional neural networks aims at finding the most important filters in a convolutional layer, with the goal of reducing computational costs and needed storage, as well as understanding the networks’ inner workings. In this paper we propose an entropy-based filter selection method that ranks filters based on the mutual information between their activations and the output classes using validation data. Our proposed method outperforms using filters’ absolute weights sum by a large margin, allowing to regain better performance with fewer filters.
id UNSP_98063fa4021af197438ed1f2721bce2f
oai_identifier_str oai:repositorio.unesp.br:11449/208080
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Entropy-Based Filter Selection in CNNs Applied to Text ClassificationConvolutional neural networksFilter pruningMutual informationFilter selection in convolutional neural networks aims at finding the most important filters in a convolutional layer, with the goal of reducing computational costs and needed storage, as well as understanding the networks’ inner workings. In this paper we propose an entropy-based filter selection method that ranks filters based on the mutual information between their activations and the output classes using validation data. Our proposed method outperforms using filters’ absolute weights sum by a large margin, allowing to regain better performance with fewer filters.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University-UNESPSão Paulo State University-UNESPFAPESP: #2018/17881-3FAPESP: #2018/25755-8Universidade Estadual Paulista (Unesp)Bezerra de Menezes Rodrigues, Rafael [UNESP]Marcílio Júnior, Wilson Estécio [UNESP]Eler, Danilo Medeiros [UNESP]2021-06-25T11:06:00Z2021-06-25T11:06:00Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject497-510http://dx.doi.org/10.1007/978-3-030-61377-8_34Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12319 LNAI, p. 497-510.1611-33490302-9743http://hdl.handle.net/11449/20808010.1007/978-3-030-61377-8_342-s2.0-85094136242Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2024-06-19T14:32:17Zoai:repositorio.unesp.br:11449/208080Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:58:14.843159Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Entropy-Based Filter Selection in CNNs Applied to Text Classification
title Entropy-Based Filter Selection in CNNs Applied to Text Classification
spellingShingle Entropy-Based Filter Selection in CNNs Applied to Text Classification
Bezerra de Menezes Rodrigues, Rafael [UNESP]
Convolutional neural networks
Filter pruning
Mutual information
title_short Entropy-Based Filter Selection in CNNs Applied to Text Classification
title_full Entropy-Based Filter Selection in CNNs Applied to Text Classification
title_fullStr Entropy-Based Filter Selection in CNNs Applied to Text Classification
title_full_unstemmed Entropy-Based Filter Selection in CNNs Applied to Text Classification
title_sort Entropy-Based Filter Selection in CNNs Applied to Text Classification
author Bezerra de Menezes Rodrigues, Rafael [UNESP]
author_facet Bezerra de Menezes Rodrigues, Rafael [UNESP]
Marcílio Júnior, Wilson Estécio [UNESP]
Eler, Danilo Medeiros [UNESP]
author_role author
author2 Marcílio Júnior, Wilson Estécio [UNESP]
Eler, Danilo Medeiros [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bezerra de Menezes Rodrigues, Rafael [UNESP]
Marcílio Júnior, Wilson Estécio [UNESP]
Eler, Danilo Medeiros [UNESP]
dc.subject.por.fl_str_mv Convolutional neural networks
Filter pruning
Mutual information
topic Convolutional neural networks
Filter pruning
Mutual information
description Filter selection in convolutional neural networks aims at finding the most important filters in a convolutional layer, with the goal of reducing computational costs and needed storage, as well as understanding the networks’ inner workings. In this paper we propose an entropy-based filter selection method that ranks filters based on the mutual information between their activations and the output classes using validation data. Our proposed method outperforms using filters’ absolute weights sum by a large margin, allowing to regain better performance with fewer filters.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2021-06-25T11:06:00Z
2021-06-25T11:06:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-030-61377-8_34
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12319 LNAI, p. 497-510.
1611-3349
0302-9743
http://hdl.handle.net/11449/208080
10.1007/978-3-030-61377-8_34
2-s2.0-85094136242
url http://dx.doi.org/10.1007/978-3-030-61377-8_34
http://hdl.handle.net/11449/208080
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12319 LNAI, p. 497-510.
1611-3349
0302-9743
10.1007/978-3-030-61377-8_34
2-s2.0-85094136242
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 497-510
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128297629908992