Entropy-Based Filter Selection in CNNs Applied to Text Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-030-61377-8_34 http://hdl.handle.net/11449/208080 |
Resumo: | Filter selection in convolutional neural networks aims at finding the most important filters in a convolutional layer, with the goal of reducing computational costs and needed storage, as well as understanding the networks’ inner workings. In this paper we propose an entropy-based filter selection method that ranks filters based on the mutual information between their activations and the output classes using validation data. Our proposed method outperforms using filters’ absolute weights sum by a large margin, allowing to regain better performance with fewer filters. |
id |
UNSP_98063fa4021af197438ed1f2721bce2f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/208080 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Entropy-Based Filter Selection in CNNs Applied to Text ClassificationConvolutional neural networksFilter pruningMutual informationFilter selection in convolutional neural networks aims at finding the most important filters in a convolutional layer, with the goal of reducing computational costs and needed storage, as well as understanding the networks’ inner workings. In this paper we propose an entropy-based filter selection method that ranks filters based on the mutual information between their activations and the output classes using validation data. Our proposed method outperforms using filters’ absolute weights sum by a large margin, allowing to regain better performance with fewer filters.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University-UNESPSão Paulo State University-UNESPFAPESP: #2018/17881-3FAPESP: #2018/25755-8Universidade Estadual Paulista (Unesp)Bezerra de Menezes Rodrigues, Rafael [UNESP]Marcílio Júnior, Wilson Estécio [UNESP]Eler, Danilo Medeiros [UNESP]2021-06-25T11:06:00Z2021-06-25T11:06:00Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject497-510http://dx.doi.org/10.1007/978-3-030-61377-8_34Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12319 LNAI, p. 497-510.1611-33490302-9743http://hdl.handle.net/11449/20808010.1007/978-3-030-61377-8_342-s2.0-85094136242Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2024-06-19T14:32:17Zoai:repositorio.unesp.br:11449/208080Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:58:14.843159Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Entropy-Based Filter Selection in CNNs Applied to Text Classification |
title |
Entropy-Based Filter Selection in CNNs Applied to Text Classification |
spellingShingle |
Entropy-Based Filter Selection in CNNs Applied to Text Classification Bezerra de Menezes Rodrigues, Rafael [UNESP] Convolutional neural networks Filter pruning Mutual information |
title_short |
Entropy-Based Filter Selection in CNNs Applied to Text Classification |
title_full |
Entropy-Based Filter Selection in CNNs Applied to Text Classification |
title_fullStr |
Entropy-Based Filter Selection in CNNs Applied to Text Classification |
title_full_unstemmed |
Entropy-Based Filter Selection in CNNs Applied to Text Classification |
title_sort |
Entropy-Based Filter Selection in CNNs Applied to Text Classification |
author |
Bezerra de Menezes Rodrigues, Rafael [UNESP] |
author_facet |
Bezerra de Menezes Rodrigues, Rafael [UNESP] Marcílio Júnior, Wilson Estécio [UNESP] Eler, Danilo Medeiros [UNESP] |
author_role |
author |
author2 |
Marcílio Júnior, Wilson Estécio [UNESP] Eler, Danilo Medeiros [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Bezerra de Menezes Rodrigues, Rafael [UNESP] Marcílio Júnior, Wilson Estécio [UNESP] Eler, Danilo Medeiros [UNESP] |
dc.subject.por.fl_str_mv |
Convolutional neural networks Filter pruning Mutual information |
topic |
Convolutional neural networks Filter pruning Mutual information |
description |
Filter selection in convolutional neural networks aims at finding the most important filters in a convolutional layer, with the goal of reducing computational costs and needed storage, as well as understanding the networks’ inner workings. In this paper we propose an entropy-based filter selection method that ranks filters based on the mutual information between their activations and the output classes using validation data. Our proposed method outperforms using filters’ absolute weights sum by a large margin, allowing to regain better performance with fewer filters. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2021-06-25T11:06:00Z 2021-06-25T11:06:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-030-61377-8_34 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12319 LNAI, p. 497-510. 1611-3349 0302-9743 http://hdl.handle.net/11449/208080 10.1007/978-3-030-61377-8_34 2-s2.0-85094136242 |
url |
http://dx.doi.org/10.1007/978-3-030-61377-8_34 http://hdl.handle.net/11449/208080 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12319 LNAI, p. 497-510. 1611-3349 0302-9743 10.1007/978-3-030-61377-8_34 2-s2.0-85094136242 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
497-510 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128297629908992 |