Phreatic levels hybrid model from different environmental variables
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.26848/rbgf.v13.3.p1231-1247 |
Texto Completo: | http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247 http://hdl.handle.net/11449/207212 |
Resumo: | Groundwater systems are complex and heterogeneous. The levels are affected by a combination of natural and anthropogenic factors. These factors, added to the inherent natural characteristics (such as permeability, porosity and grain size) represent challenges for hydrological modeling. This study aimed to verify the influence of soil physical-hydric and management, topography and vegetation variables on the Bauru Aquifer System (SAB) groundwater levels oscillations. These aspects summed up to 21 possible predictive variables of groundwater levels. Information were collected at the watersheds of the Santa Barbara Ecological Station/SP-Brazil. The most relevant variables for the multiple regression model were chosen using principal components analysis, which determined those variables with greater variability. The results indicated a robust fit to the data by the model and good predictive capacity for new observations. This information can help decision-making on water use and support water resource management instruments, as tools for water resource planning. |
id |
UNSP_98bcd73f07a53049c4a204086db4808d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/207212 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Phreatic levels hybrid model from different environmental variablesModelo híbrido de oscilação de níveis freáticos a partir de diferentes variáveis ambientaisGroundwaterModellingMultiple linear regressionPrincipal component analysisGroundwater systems are complex and heterogeneous. The levels are affected by a combination of natural and anthropogenic factors. These factors, added to the inherent natural characteristics (such as permeability, porosity and grain size) represent challenges for hydrological modeling. This study aimed to verify the influence of soil physical-hydric and management, topography and vegetation variables on the Bauru Aquifer System (SAB) groundwater levels oscillations. These aspects summed up to 21 possible predictive variables of groundwater levels. Information were collected at the watersheds of the Santa Barbara Ecological Station/SP-Brazil. The most relevant variables for the multiple regression model were chosen using principal components analysis, which determined those variables with greater variability. The results indicated a robust fit to the data by the model and good predictive capacity for new observations. This information can help decision-making on water use and support water resource management instruments, as tools for water resource planning.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCE (Faculdade de Ciências e Engenharia)-Campus de Tupã Departamento de Engenharia de Biossistemas, Rua Domingos da Costa Lopes, 780UNESP (Universidade Estadual Júlio de Mesquita Filho-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu, Av. Universitária, 3780UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu Departamento de Produção e Melhoramento Vegetal, Av. Universitária, 3780UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCE (Faculdade de Ciências e Engenharia)-Campus de Tupã Departamento de Engenharia de Biossistemas, Rua Domingos da Costa Lopes, 780UNESP (Universidade Estadual Júlio de Mesquita Filho-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu, Av. Universitária, 3780UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu Departamento de Produção e Melhoramento Vegetal, Av. Universitária, 3780FAPESP: 2014/04524-7FAPESP: 2016/09737-4Universidade Estadual Paulista (Unesp)Manzione, Rodrigo Lilla [UNESP]Nava, Aira [UNESP]Sartori, Maria Márcia Pereira [UNESP]2021-06-25T10:50:47Z2021-06-25T10:50:47Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1231-1247http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247Revista Brasileira de Geografia Fisica, v. 13, n. 3, p. 1231-1247, 2020.1984-2295http://hdl.handle.net/11449/20721210.26848/rbgf.v13.3.p1231-12472-s2.0-85100163012Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporRevista Brasileira de Geografia Fisicainfo:eu-repo/semantics/openAccess2024-04-30T15:57:56Zoai:repositorio.unesp.br:11449/207212Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:27:43.485513Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Phreatic levels hybrid model from different environmental variables Modelo híbrido de oscilação de níveis freáticos a partir de diferentes variáveis ambientais |
title |
Phreatic levels hybrid model from different environmental variables |
spellingShingle |
Phreatic levels hybrid model from different environmental variables Phreatic levels hybrid model from different environmental variables Manzione, Rodrigo Lilla [UNESP] Groundwater Modelling Multiple linear regression Principal component analysis Manzione, Rodrigo Lilla [UNESP] Groundwater Modelling Multiple linear regression Principal component analysis |
title_short |
Phreatic levels hybrid model from different environmental variables |
title_full |
Phreatic levels hybrid model from different environmental variables |
title_fullStr |
Phreatic levels hybrid model from different environmental variables Phreatic levels hybrid model from different environmental variables |
title_full_unstemmed |
Phreatic levels hybrid model from different environmental variables Phreatic levels hybrid model from different environmental variables |
title_sort |
Phreatic levels hybrid model from different environmental variables |
author |
Manzione, Rodrigo Lilla [UNESP] |
author_facet |
Manzione, Rodrigo Lilla [UNESP] Manzione, Rodrigo Lilla [UNESP] Nava, Aira [UNESP] Sartori, Maria Márcia Pereira [UNESP] Nava, Aira [UNESP] Sartori, Maria Márcia Pereira [UNESP] |
author_role |
author |
author2 |
Nava, Aira [UNESP] Sartori, Maria Márcia Pereira [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Manzione, Rodrigo Lilla [UNESP] Nava, Aira [UNESP] Sartori, Maria Márcia Pereira [UNESP] |
dc.subject.por.fl_str_mv |
Groundwater Modelling Multiple linear regression Principal component analysis |
topic |
Groundwater Modelling Multiple linear regression Principal component analysis |
description |
Groundwater systems are complex and heterogeneous. The levels are affected by a combination of natural and anthropogenic factors. These factors, added to the inherent natural characteristics (such as permeability, porosity and grain size) represent challenges for hydrological modeling. This study aimed to verify the influence of soil physical-hydric and management, topography and vegetation variables on the Bauru Aquifer System (SAB) groundwater levels oscillations. These aspects summed up to 21 possible predictive variables of groundwater levels. Information were collected at the watersheds of the Santa Barbara Ecological Station/SP-Brazil. The most relevant variables for the multiple regression model were chosen using principal components analysis, which determined those variables with greater variability. The results indicated a robust fit to the data by the model and good predictive capacity for new observations. This information can help decision-making on water use and support water resource management instruments, as tools for water resource planning. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2021-06-25T10:50:47Z 2021-06-25T10:50:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247 Revista Brasileira de Geografia Fisica, v. 13, n. 3, p. 1231-1247, 2020. 1984-2295 http://hdl.handle.net/11449/207212 10.26848/rbgf.v13.3.p1231-1247 2-s2.0-85100163012 |
url |
http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247 http://hdl.handle.net/11449/207212 |
identifier_str_mv |
Revista Brasileira de Geografia Fisica, v. 13, n. 3, p. 1231-1247, 2020. 1984-2295 10.26848/rbgf.v13.3.p1231-1247 2-s2.0-85100163012 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Revista Brasileira de Geografia Fisica |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1231-1247 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822218433841856512 |
dc.identifier.doi.none.fl_str_mv |
10.26848/rbgf.v13.3.p1231-1247 |