Phreatic levels hybrid model from different environmental variables

Detalhes bibliográficos
Autor(a) principal: Manzione, Rodrigo Lilla [UNESP]
Data de Publicação: 2020
Outros Autores: Nava, Aira [UNESP], Sartori, Maria Márcia Pereira [UNESP]
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
DOI: 10.26848/rbgf.v13.3.p1231-1247
Texto Completo: http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247
http://hdl.handle.net/11449/207212
Resumo: Groundwater systems are complex and heterogeneous. The levels are affected by a combination of natural and anthropogenic factors. These factors, added to the inherent natural characteristics (such as permeability, porosity and grain size) represent challenges for hydrological modeling. This study aimed to verify the influence of soil physical-hydric and management, topography and vegetation variables on the Bauru Aquifer System (SAB) groundwater levels oscillations. These aspects summed up to 21 possible predictive variables of groundwater levels. Information were collected at the watersheds of the Santa Barbara Ecological Station/SP-Brazil. The most relevant variables for the multiple regression model were chosen using principal components analysis, which determined those variables with greater variability. The results indicated a robust fit to the data by the model and good predictive capacity for new observations. This information can help decision-making on water use and support water resource management instruments, as tools for water resource planning.
id UNSP_98bcd73f07a53049c4a204086db4808d
oai_identifier_str oai:repositorio.unesp.br:11449/207212
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Phreatic levels hybrid model from different environmental variablesModelo híbrido de oscilação de níveis freáticos a partir de diferentes variáveis ambientaisGroundwaterModellingMultiple linear regressionPrincipal component analysisGroundwater systems are complex and heterogeneous. The levels are affected by a combination of natural and anthropogenic factors. These factors, added to the inherent natural characteristics (such as permeability, porosity and grain size) represent challenges for hydrological modeling. This study aimed to verify the influence of soil physical-hydric and management, topography and vegetation variables on the Bauru Aquifer System (SAB) groundwater levels oscillations. These aspects summed up to 21 possible predictive variables of groundwater levels. Information were collected at the watersheds of the Santa Barbara Ecological Station/SP-Brazil. The most relevant variables for the multiple regression model were chosen using principal components analysis, which determined those variables with greater variability. The results indicated a robust fit to the data by the model and good predictive capacity for new observations. This information can help decision-making on water use and support water resource management instruments, as tools for water resource planning.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCE (Faculdade de Ciências e Engenharia)-Campus de Tupã Departamento de Engenharia de Biossistemas, Rua Domingos da Costa Lopes, 780UNESP (Universidade Estadual Júlio de Mesquita Filho-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu, Av. Universitária, 3780UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu Departamento de Produção e Melhoramento Vegetal, Av. Universitária, 3780UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCE (Faculdade de Ciências e Engenharia)-Campus de Tupã Departamento de Engenharia de Biossistemas, Rua Domingos da Costa Lopes, 780UNESP (Universidade Estadual Júlio de Mesquita Filho-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu, Av. Universitária, 3780UNESP (Universidade Estadual Júlio de Mesquita Filho)-FCA (Faculdade de Ciências Agronômicas)-Campus de Botucatu Departamento de Produção e Melhoramento Vegetal, Av. Universitária, 3780FAPESP: 2014/04524-7FAPESP: 2016/09737-4Universidade Estadual Paulista (Unesp)Manzione, Rodrigo Lilla [UNESP]Nava, Aira [UNESP]Sartori, Maria Márcia Pereira [UNESP]2021-06-25T10:50:47Z2021-06-25T10:50:47Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1231-1247http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247Revista Brasileira de Geografia Fisica, v. 13, n. 3, p. 1231-1247, 2020.1984-2295http://hdl.handle.net/11449/20721210.26848/rbgf.v13.3.p1231-12472-s2.0-85100163012Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporRevista Brasileira de Geografia Fisicainfo:eu-repo/semantics/openAccess2024-04-30T15:57:56Zoai:repositorio.unesp.br:11449/207212Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:27:43.485513Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Phreatic levels hybrid model from different environmental variables
Modelo híbrido de oscilação de níveis freáticos a partir de diferentes variáveis ambientais
title Phreatic levels hybrid model from different environmental variables
spellingShingle Phreatic levels hybrid model from different environmental variables
Phreatic levels hybrid model from different environmental variables
Manzione, Rodrigo Lilla [UNESP]
Groundwater
Modelling
Multiple linear regression
Principal component analysis
Manzione, Rodrigo Lilla [UNESP]
Groundwater
Modelling
Multiple linear regression
Principal component analysis
title_short Phreatic levels hybrid model from different environmental variables
title_full Phreatic levels hybrid model from different environmental variables
title_fullStr Phreatic levels hybrid model from different environmental variables
Phreatic levels hybrid model from different environmental variables
title_full_unstemmed Phreatic levels hybrid model from different environmental variables
Phreatic levels hybrid model from different environmental variables
title_sort Phreatic levels hybrid model from different environmental variables
author Manzione, Rodrigo Lilla [UNESP]
author_facet Manzione, Rodrigo Lilla [UNESP]
Manzione, Rodrigo Lilla [UNESP]
Nava, Aira [UNESP]
Sartori, Maria Márcia Pereira [UNESP]
Nava, Aira [UNESP]
Sartori, Maria Márcia Pereira [UNESP]
author_role author
author2 Nava, Aira [UNESP]
Sartori, Maria Márcia Pereira [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Manzione, Rodrigo Lilla [UNESP]
Nava, Aira [UNESP]
Sartori, Maria Márcia Pereira [UNESP]
dc.subject.por.fl_str_mv Groundwater
Modelling
Multiple linear regression
Principal component analysis
topic Groundwater
Modelling
Multiple linear regression
Principal component analysis
description Groundwater systems are complex and heterogeneous. The levels are affected by a combination of natural and anthropogenic factors. These factors, added to the inherent natural characteristics (such as permeability, porosity and grain size) represent challenges for hydrological modeling. This study aimed to verify the influence of soil physical-hydric and management, topography and vegetation variables on the Bauru Aquifer System (SAB) groundwater levels oscillations. These aspects summed up to 21 possible predictive variables of groundwater levels. Information were collected at the watersheds of the Santa Barbara Ecological Station/SP-Brazil. The most relevant variables for the multiple regression model were chosen using principal components analysis, which determined those variables with greater variability. The results indicated a robust fit to the data by the model and good predictive capacity for new observations. This information can help decision-making on water use and support water resource management instruments, as tools for water resource planning.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2021-06-25T10:50:47Z
2021-06-25T10:50:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247
Revista Brasileira de Geografia Fisica, v. 13, n. 3, p. 1231-1247, 2020.
1984-2295
http://hdl.handle.net/11449/207212
10.26848/rbgf.v13.3.p1231-1247
2-s2.0-85100163012
url http://dx.doi.org/10.26848/rbgf.v13.3.p1231-1247
http://hdl.handle.net/11449/207212
identifier_str_mv Revista Brasileira de Geografia Fisica, v. 13, n. 3, p. 1231-1247, 2020.
1984-2295
10.26848/rbgf.v13.3.p1231-1247
2-s2.0-85100163012
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Revista Brasileira de Geografia Fisica
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1231-1247
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1822218433841856512
dc.identifier.doi.none.fl_str_mv 10.26848/rbgf.v13.3.p1231-1247