Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A

Detalhes bibliográficos
Autor(a) principal: Lopes, Mayara Canaver e
Data de Publicação: 2023
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/244764
Resumo: A bolsa de valores é um mercado de grande magnitude, cujo impacto afeta diretamente milhões de pessoas em todo o mundo. Devido à sua natureza global e alta volatilidade, caracterizada pelas constantes variações nos valores das ações, torna-se extremamente desafiador prever o comportamento desses ativos. A volatilidade dos valores, eventos geopolíticos adversos, como conflitos e crises, e fatores socioeconômicos internos podem influenciar significativamente o valor das ações na bolsa. Muitos investidores assumem grandes riscos na tentativa de obter lucro ou uma renda extra mensal. Diante dessa realidade, surgem metodologias que buscam facilitar a tomada de decisões e aumentar as chances de lucratividade. A aplicação de técnicas de machine learning e análise de dados tem se tornado cada vez mais comum no cotidiano das pessoas. A partir dos dados, é possível extrair informações valiosas e gerar ideias lucrativas. Nesse contexto, surge o questionamento sobre como a análise de dados e modelos preditivos podem auxiliar no mercado de ações. Poderíamos formar conjuntos de dados históricos e analisar seus padrões ao longo do tempo? Seria possível formular e testar várias hipóteses nesse sentido. Com base nesse questionamento, este trabalho propõe a análise de dados do mercado de ações, com foco específico na AMBEV. Por meio da análise de séries temporais e aplicação de modelos preditivos, busca-se identificar a melhor estratégia de tomada de decisão e estimar os lucros potenciais. Para alcançar esse objetivo, a coleta de dados é realizada inicialmente, seguida pela observação desses dados utilizando modelos de séries temporais e, posteriormente, pela aplicação de modelos preditivos. Esses modelos podem fornecer insights valiosos, como a identificação das ações mais viáveis, a avaliação dos riscos envolvidos e a estimativa da margem de lucratividade associada a cada uma delas. Dessa forma, a análise de dados e modelos preditivos se mostram ferramentas promissoras para auxiliar os investidores na tomada de decisões mais informadas e estratégicas no mercado de ações.
id UNSP_9bb854b66e32e1b71a837d2af80f2eb5
oai_identifier_str oai:repositorio.unesp.br:11449/244764
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.ATime series analysis and profit and/or loss forecast on the shares of the company AMBEV S.AAMBEVAnálise de dadosBolsa de valoresModelos preditivosSéries temporaisMachine learningData analysisPredictive modelsStock exchangeTime seriesA bolsa de valores é um mercado de grande magnitude, cujo impacto afeta diretamente milhões de pessoas em todo o mundo. Devido à sua natureza global e alta volatilidade, caracterizada pelas constantes variações nos valores das ações, torna-se extremamente desafiador prever o comportamento desses ativos. A volatilidade dos valores, eventos geopolíticos adversos, como conflitos e crises, e fatores socioeconômicos internos podem influenciar significativamente o valor das ações na bolsa. Muitos investidores assumem grandes riscos na tentativa de obter lucro ou uma renda extra mensal. Diante dessa realidade, surgem metodologias que buscam facilitar a tomada de decisões e aumentar as chances de lucratividade. A aplicação de técnicas de machine learning e análise de dados tem se tornado cada vez mais comum no cotidiano das pessoas. A partir dos dados, é possível extrair informações valiosas e gerar ideias lucrativas. Nesse contexto, surge o questionamento sobre como a análise de dados e modelos preditivos podem auxiliar no mercado de ações. Poderíamos formar conjuntos de dados históricos e analisar seus padrões ao longo do tempo? Seria possível formular e testar várias hipóteses nesse sentido. Com base nesse questionamento, este trabalho propõe a análise de dados do mercado de ações, com foco específico na AMBEV. Por meio da análise de séries temporais e aplicação de modelos preditivos, busca-se identificar a melhor estratégia de tomada de decisão e estimar os lucros potenciais. Para alcançar esse objetivo, a coleta de dados é realizada inicialmente, seguida pela observação desses dados utilizando modelos de séries temporais e, posteriormente, pela aplicação de modelos preditivos. Esses modelos podem fornecer insights valiosos, como a identificação das ações mais viáveis, a avaliação dos riscos envolvidos e a estimativa da margem de lucratividade associada a cada uma delas. Dessa forma, a análise de dados e modelos preditivos se mostram ferramentas promissoras para auxiliar os investidores na tomada de decisões mais informadas e estratégicas no mercado de ações.The stock market is a trillion-dollar market that directly and indirectly affects millions of people worldwide. Being a global and highly volatile market, with stock values fluctuating from minute to minute, predicting the value of a particular stock is extremely challenging. Factors such as volatility, geopolitical events (e.g., wars and conflicts), and internal social issues can significantly impact the value of stocks. Many shareholders take high risks to generate profits or even earn extra income at the end of the month. Based on this, various methods can be considered to facilitate actions and increase the likelihood of profit. The use of machine learning combined with data analysis is increasingly present in people's daily lives. With data, there is information, and with information, new ideas for profit can be generated. The question arises: How can data analysis and predictive models help us with the stock market? What if we collect a dataset and observe its patterns over time? Multiple hypotheses can be formulated and tested. Based on this question, this work proposes the analysis of stock market data, specifically focusing on AMBEV, and using time series analysis along with predictive models to determine the best decision-making approach for estimating potential profits. To achieve this goal, data collection is initially performed, followed by data observation using a time series model, and subsequently, predictive models are applied. This approach can provide a range of final observations, such as identifying the most viable actions, assessing their associated risks, and estimating their profitability margins. In summary, data analysis and predictive models present promising tools to assist investors in making informed and strategic decisions in the stock marketNão recebi financiamentoUniversidade Estadual Paulista (Unesp)Crepaldi, Antonio Fernando [UNESP]Universidade Estadual Paulista (Unesp)Lopes, Mayara Canaver e2023-07-26T10:55:22Z2023-07-26T10:55:22Z2023-07-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://hdl.handle.net/11449/244764porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-02T12:18:48Zoai:repositorio.unesp.br:11449/244764Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:31:25.744945Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
Time series analysis and profit and/or loss forecast on the shares of the company AMBEV S.A
title Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
spellingShingle Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
Lopes, Mayara Canaver e
AMBEV
Análise de dados
Bolsa de valores
Modelos preditivos
Séries temporais
Machine learning
Data analysis
Predictive models
Stock exchange
Time series
title_short Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
title_full Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
title_fullStr Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
title_full_unstemmed Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
title_sort Análise de séries temporais e previsão de lucro e/ou perda nas ações da empresa AMBEV S.A
author Lopes, Mayara Canaver e
author_facet Lopes, Mayara Canaver e
author_role author
dc.contributor.none.fl_str_mv Crepaldi, Antonio Fernando [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Lopes, Mayara Canaver e
dc.subject.por.fl_str_mv AMBEV
Análise de dados
Bolsa de valores
Modelos preditivos
Séries temporais
Machine learning
Data analysis
Predictive models
Stock exchange
Time series
topic AMBEV
Análise de dados
Bolsa de valores
Modelos preditivos
Séries temporais
Machine learning
Data analysis
Predictive models
Stock exchange
Time series
description A bolsa de valores é um mercado de grande magnitude, cujo impacto afeta diretamente milhões de pessoas em todo o mundo. Devido à sua natureza global e alta volatilidade, caracterizada pelas constantes variações nos valores das ações, torna-se extremamente desafiador prever o comportamento desses ativos. A volatilidade dos valores, eventos geopolíticos adversos, como conflitos e crises, e fatores socioeconômicos internos podem influenciar significativamente o valor das ações na bolsa. Muitos investidores assumem grandes riscos na tentativa de obter lucro ou uma renda extra mensal. Diante dessa realidade, surgem metodologias que buscam facilitar a tomada de decisões e aumentar as chances de lucratividade. A aplicação de técnicas de machine learning e análise de dados tem se tornado cada vez mais comum no cotidiano das pessoas. A partir dos dados, é possível extrair informações valiosas e gerar ideias lucrativas. Nesse contexto, surge o questionamento sobre como a análise de dados e modelos preditivos podem auxiliar no mercado de ações. Poderíamos formar conjuntos de dados históricos e analisar seus padrões ao longo do tempo? Seria possível formular e testar várias hipóteses nesse sentido. Com base nesse questionamento, este trabalho propõe a análise de dados do mercado de ações, com foco específico na AMBEV. Por meio da análise de séries temporais e aplicação de modelos preditivos, busca-se identificar a melhor estratégia de tomada de decisão e estimar os lucros potenciais. Para alcançar esse objetivo, a coleta de dados é realizada inicialmente, seguida pela observação desses dados utilizando modelos de séries temporais e, posteriormente, pela aplicação de modelos preditivos. Esses modelos podem fornecer insights valiosos, como a identificação das ações mais viáveis, a avaliação dos riscos envolvidos e a estimativa da margem de lucratividade associada a cada uma delas. Dessa forma, a análise de dados e modelos preditivos se mostram ferramentas promissoras para auxiliar os investidores na tomada de decisões mais informadas e estratégicas no mercado de ações.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-26T10:55:22Z
2023-07-26T10:55:22Z
2023-07-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/244764
url http://hdl.handle.net/11449/244764
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129528913985536