Projeto E análise de uma rede neural para resolver problemas de programação dinâmica

Detalhes bibliográficos
Autor(a) principal: Da Silva, I. N. [UNESP]
Data de Publicação: 2001
Outros Autores: Arruda, L. V R [UNESP], Do Amaral, W. C. [UNESP], Bordon, M. E. [UNESP]
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.sba.org.br/revista/vol12/v12a255.htm
http://hdl.handle.net/11449/66448
Resumo: Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.
id UNSP_9c5294617099a74332a15be95bf303d4
oai_identifier_str oai:repositorio.unesp.br:11449/66448
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Projeto E análise de uma rede neural para resolver problemas de programação dinâmicaProject E analysis of a neural network for resolution of dynamic progamming problemsArtificial neural networksDynamic programmingHopfield networksSystem optimizationComputer simulationOptimal systemsProblem solvingProgram processorsRecurrent neural networksSystems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.UNESP/FE/DEE, CP 473, CEP 17033-360, Bauru - SPUNESP/FE/DEE, CP 473, CEP 17033-360, Bauru - SPUniversidade Estadual Paulista (Unesp)Da Silva, I. N. [UNESP]Arruda, L. V R [UNESP]Do Amaral, W. C. [UNESP]Bordon, M. E. [UNESP]2014-05-27T11:20:14Z2014-05-27T11:20:14Z2001-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-11application/pdfhttp://www.sba.org.br/revista/vol12/v12a255.htmControle y Automacao, v. 12, n. 1, p. 1-11, 2001.0103-1759http://hdl.handle.net/11449/664482-s2.0-00349451802-s2.0-0034945180.pdf55898388442982320000-0001-8510-8245Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporControle y Automacaoinfo:eu-repo/semantics/openAccess2024-06-28T13:34:13Zoai:repositorio.unesp.br:11449/66448Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:46:35.460643Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
Project E analysis of a neural network for resolution of dynamic progamming problems
title Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
spellingShingle Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
Da Silva, I. N. [UNESP]
Artificial neural networks
Dynamic programming
Hopfield networks
System optimization
Computer simulation
Optimal systems
Problem solving
Program processors
Recurrent neural networks
title_short Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
title_full Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
title_fullStr Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
title_full_unstemmed Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
title_sort Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
author Da Silva, I. N. [UNESP]
author_facet Da Silva, I. N. [UNESP]
Arruda, L. V R [UNESP]
Do Amaral, W. C. [UNESP]
Bordon, M. E. [UNESP]
author_role author
author2 Arruda, L. V R [UNESP]
Do Amaral, W. C. [UNESP]
Bordon, M. E. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Da Silva, I. N. [UNESP]
Arruda, L. V R [UNESP]
Do Amaral, W. C. [UNESP]
Bordon, M. E. [UNESP]
dc.subject.por.fl_str_mv Artificial neural networks
Dynamic programming
Hopfield networks
System optimization
Computer simulation
Optimal systems
Problem solving
Program processors
Recurrent neural networks
topic Artificial neural networks
Dynamic programming
Hopfield networks
System optimization
Computer simulation
Optimal systems
Problem solving
Program processors
Recurrent neural networks
description Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01
2014-05-27T11:20:14Z
2014-05-27T11:20:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.sba.org.br/revista/vol12/v12a255.htm
Controle y Automacao, v. 12, n. 1, p. 1-11, 2001.
0103-1759
http://hdl.handle.net/11449/66448
2-s2.0-0034945180
2-s2.0-0034945180.pdf
5589838844298232
0000-0001-8510-8245
url http://www.sba.org.br/revista/vol12/v12a255.htm
http://hdl.handle.net/11449/66448
identifier_str_mv Controle y Automacao, v. 12, n. 1, p. 1-11, 2001.
0103-1759
2-s2.0-0034945180
2-s2.0-0034945180.pdf
5589838844298232
0000-0001-8510-8245
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Controle y Automacao
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-11
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128856014454784