Projeto E análise de uma rede neural para resolver problemas de programação dinâmica
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.sba.org.br/revista/vol12/v12a255.htm http://hdl.handle.net/11449/66448 |
Resumo: | Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement. |
id |
UNSP_9c5294617099a74332a15be95bf303d4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/66448 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmicaProject E analysis of a neural network for resolution of dynamic progamming problemsArtificial neural networksDynamic programmingHopfield networksSystem optimizationComputer simulationOptimal systemsProblem solvingProgram processorsRecurrent neural networksSystems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.UNESP/FE/DEE, CP 473, CEP 17033-360, Bauru - SPUNESP/FE/DEE, CP 473, CEP 17033-360, Bauru - SPUniversidade Estadual Paulista (Unesp)Da Silva, I. N. [UNESP]Arruda, L. V R [UNESP]Do Amaral, W. C. [UNESP]Bordon, M. E. [UNESP]2014-05-27T11:20:14Z2014-05-27T11:20:14Z2001-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-11application/pdfhttp://www.sba.org.br/revista/vol12/v12a255.htmControle y Automacao, v. 12, n. 1, p. 1-11, 2001.0103-1759http://hdl.handle.net/11449/664482-s2.0-00349451802-s2.0-0034945180.pdf55898388442982320000-0001-8510-8245Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporControle y Automacaoinfo:eu-repo/semantics/openAccess2024-06-28T13:34:13Zoai:repositorio.unesp.br:11449/66448Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:46:35.460643Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica Project E analysis of a neural network for resolution of dynamic progamming problems |
title |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica |
spellingShingle |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica Da Silva, I. N. [UNESP] Artificial neural networks Dynamic programming Hopfield networks System optimization Computer simulation Optimal systems Problem solving Program processors Recurrent neural networks |
title_short |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica |
title_full |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica |
title_fullStr |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica |
title_full_unstemmed |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica |
title_sort |
Projeto E análise de uma rede neural para resolver problemas de programação dinâmica |
author |
Da Silva, I. N. [UNESP] |
author_facet |
Da Silva, I. N. [UNESP] Arruda, L. V R [UNESP] Do Amaral, W. C. [UNESP] Bordon, M. E. [UNESP] |
author_role |
author |
author2 |
Arruda, L. V R [UNESP] Do Amaral, W. C. [UNESP] Bordon, M. E. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Da Silva, I. N. [UNESP] Arruda, L. V R [UNESP] Do Amaral, W. C. [UNESP] Bordon, M. E. [UNESP] |
dc.subject.por.fl_str_mv |
Artificial neural networks Dynamic programming Hopfield networks System optimization Computer simulation Optimal systems Problem solving Program processors Recurrent neural networks |
topic |
Artificial neural networks Dynamic programming Hopfield networks System optimization Computer simulation Optimal systems Problem solving Program processors Recurrent neural networks |
description |
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-01-01 2014-05-27T11:20:14Z 2014-05-27T11:20:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.sba.org.br/revista/vol12/v12a255.htm Controle y Automacao, v. 12, n. 1, p. 1-11, 2001. 0103-1759 http://hdl.handle.net/11449/66448 2-s2.0-0034945180 2-s2.0-0034945180.pdf 5589838844298232 0000-0001-8510-8245 |
url |
http://www.sba.org.br/revista/vol12/v12a255.htm http://hdl.handle.net/11449/66448 |
identifier_str_mv |
Controle y Automacao, v. 12, n. 1, p. 1-11, 2001. 0103-1759 2-s2.0-0034945180 2-s2.0-0034945180.pdf 5589838844298232 0000-0001-8510-8245 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Controle y Automacao |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1-11 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128856014454784 |