Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/rs13081429 http://hdl.handle.net/11449/207604 |
Resumo: | The accelerated urban development over the last decades has made it necessary to update spatial information rapidly and constantly. Therefore, citiesʹ three‐dimensional models have been widely used as a study base for various urban problems. However, although many efforts have been made to develop new building extraction methods, reliable and automatic extraction is still a major challenge for the remote sensing and computer vision communities, mainly due to the complexity and variability of urban scenes. This paper presents a method to extract building roof boundaries in the object space by integrating a high‐resolution aerial images stereo pair, three‐dimensional roof models reconstructed from light detection and ranging (LiDAR) data, and contextual information of the scenes involved. The proposed method focuses on overcoming three types of common problems that can disturb the automatic roof extraction in the urban environment: perspective occlusions caused by high buildings, occlusions caused by vegetation covering the roof, and shadows that are adjacent to the roofs, which can be misinterpreted as roof edges. For this, an improved Snake‐based mathematical model is developed considering the radiometric and geometric properties of roofs to represent the roof boundary in the image space. A new approach for calculating the corner response and a shadow compensation factor was added to the model. The created model is then adapted to represent the boundaries in the object space considering a stereo pair of aerial images. Finally, the optimal polyline, representing a selected roof boundary, is obtained by optimizing the proposed Snake‐based model using a dynamic programming (DP) approach considering the contextual information of the scene. The results showed that the proposed method works properly in boundary extraction of roofs with occlusion and shadows areas, presenting completeness and correctness average values above 90%, RMSE average values below 0.5 m for E and N components, and below 1 m for H component. |
id |
UNSP_9d408bf79f5543812ee921d0b5253cdc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/207604 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof modelsAirborne LiDARBuilding roof boundary extractionDynamic programmingHigh‐resolution imageSnake modelStereo pair of imagesThree‐dimensional roof modelThe accelerated urban development over the last decades has made it necessary to update spatial information rapidly and constantly. Therefore, citiesʹ three‐dimensional models have been widely used as a study base for various urban problems. However, although many efforts have been made to develop new building extraction methods, reliable and automatic extraction is still a major challenge for the remote sensing and computer vision communities, mainly due to the complexity and variability of urban scenes. This paper presents a method to extract building roof boundaries in the object space by integrating a high‐resolution aerial images stereo pair, three‐dimensional roof models reconstructed from light detection and ranging (LiDAR) data, and contextual information of the scenes involved. The proposed method focuses on overcoming three types of common problems that can disturb the automatic roof extraction in the urban environment: perspective occlusions caused by high buildings, occlusions caused by vegetation covering the roof, and shadows that are adjacent to the roofs, which can be misinterpreted as roof edges. For this, an improved Snake‐based mathematical model is developed considering the radiometric and geometric properties of roofs to represent the roof boundary in the image space. A new approach for calculating the corner response and a shadow compensation factor was added to the model. The created model is then adapted to represent the boundaries in the object space considering a stereo pair of aerial images. Finally, the optimal polyline, representing a selected roof boundary, is obtained by optimizing the proposed Snake‐based model using a dynamic programming (DP) approach considering the contextual information of the scene. The results showed that the proposed method works properly in boundary extraction of roofs with occlusion and shadows areas, presenting completeness and correctness average values above 90%, RMSE average values below 0.5 m for E and N components, and below 1 m for H component.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Department of Cartography School of Sciences and Technology São Paulo State University (UNESP)Department of Mathematics and Computer Science School of Sciences and Technology São Paulo State University (UNESP)Department of Infrastructure and Environment School of Civil Engineering Architecture Urban Planning University of Campinas (UNICAMP)Department of Cartography School of Sciences and Technology São Paulo State University (UNESP)Department of Mathematics and Computer Science School of Sciences and Technology São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Ywata, Michelle S. Y. [UNESP]Dal Poz, Aluir P. [UNESP]Shimabukuro, Milton H. [UNESP]de Oliveira, Henrique C.2021-06-25T10:57:56Z2021-06-25T10:57:56Z2021-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/rs13081429Remote Sensing, v. 13, n. 8, 2021.2072-4292http://hdl.handle.net/11449/20760410.3390/rs130814292-s2.0-85104240081Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRemote Sensinginfo:eu-repo/semantics/openAccess2024-06-18T15:01:04Zoai:repositorio.unesp.br:11449/207604Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:14:41.405963Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models |
title |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models |
spellingShingle |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models Ywata, Michelle S. Y. [UNESP] Airborne LiDAR Building roof boundary extraction Dynamic programming High‐resolution image Snake model Stereo pair of images Three‐dimensional roof model |
title_short |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models |
title_full |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models |
title_fullStr |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models |
title_full_unstemmed |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models |
title_sort |
Snake‐based model for automatic roof boundary extraction in the object space integrating a high‐resolution aerial images stereo pair and 3d roof models |
author |
Ywata, Michelle S. Y. [UNESP] |
author_facet |
Ywata, Michelle S. Y. [UNESP] Dal Poz, Aluir P. [UNESP] Shimabukuro, Milton H. [UNESP] de Oliveira, Henrique C. |
author_role |
author |
author2 |
Dal Poz, Aluir P. [UNESP] Shimabukuro, Milton H. [UNESP] de Oliveira, Henrique C. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Ywata, Michelle S. Y. [UNESP] Dal Poz, Aluir P. [UNESP] Shimabukuro, Milton H. [UNESP] de Oliveira, Henrique C. |
dc.subject.por.fl_str_mv |
Airborne LiDAR Building roof boundary extraction Dynamic programming High‐resolution image Snake model Stereo pair of images Three‐dimensional roof model |
topic |
Airborne LiDAR Building roof boundary extraction Dynamic programming High‐resolution image Snake model Stereo pair of images Three‐dimensional roof model |
description |
The accelerated urban development over the last decades has made it necessary to update spatial information rapidly and constantly. Therefore, citiesʹ three‐dimensional models have been widely used as a study base for various urban problems. However, although many efforts have been made to develop new building extraction methods, reliable and automatic extraction is still a major challenge for the remote sensing and computer vision communities, mainly due to the complexity and variability of urban scenes. This paper presents a method to extract building roof boundaries in the object space by integrating a high‐resolution aerial images stereo pair, three‐dimensional roof models reconstructed from light detection and ranging (LiDAR) data, and contextual information of the scenes involved. The proposed method focuses on overcoming three types of common problems that can disturb the automatic roof extraction in the urban environment: perspective occlusions caused by high buildings, occlusions caused by vegetation covering the roof, and shadows that are adjacent to the roofs, which can be misinterpreted as roof edges. For this, an improved Snake‐based mathematical model is developed considering the radiometric and geometric properties of roofs to represent the roof boundary in the image space. A new approach for calculating the corner response and a shadow compensation factor was added to the model. The created model is then adapted to represent the boundaries in the object space considering a stereo pair of aerial images. Finally, the optimal polyline, representing a selected roof boundary, is obtained by optimizing the proposed Snake‐based model using a dynamic programming (DP) approach considering the contextual information of the scene. The results showed that the proposed method works properly in boundary extraction of roofs with occlusion and shadows areas, presenting completeness and correctness average values above 90%, RMSE average values below 0.5 m for E and N components, and below 1 m for H component. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:57:56Z 2021-06-25T10:57:56Z 2021-04-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/rs13081429 Remote Sensing, v. 13, n. 8, 2021. 2072-4292 http://hdl.handle.net/11449/207604 10.3390/rs13081429 2-s2.0-85104240081 |
url |
http://dx.doi.org/10.3390/rs13081429 http://hdl.handle.net/11449/207604 |
identifier_str_mv |
Remote Sensing, v. 13, n. 8, 2021. 2072-4292 10.3390/rs13081429 2-s2.0-85104240081 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Remote Sensing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128334419197952 |