Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning

Detalhes bibliográficos
Autor(a) principal: de Oliveira, Romário Porto [UNESP]
Data de Publicação: 2022
Outros Autores: Barbosa Júnior, Marcelo Rodrigues [UNESP], Pinto, Antônio Alves [UNESP], Oliveira, Jean Lucas Pereira [UNESP], Zerbato, Cristiano [UNESP], Furlani, Carlos Eduardo Angeli [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.3390/agronomy12091992
http://hdl.handle.net/11449/249178
Resumo: Multispectral sensors onboard unmanned aerial vehicles (UAV) have proven accurate and fast to predict sugarcane yield. However, challenges to a reliable approach still exist. In this study, we propose to predict sugarcane biometric parameters by using machine learning (ML) algorithms and multitemporal data through the analysis of multispectral images from UAV onboard sensors. The research was conducted on five varieties of sugarcane, as a way to make a robust approach. Multispectral images were collected every 40 days and the evaluated biometric parameters were: number of tillers (NT), plant height (PH), and stalk diameter (SD). Two ML models were used: multiple linear regression (MLR) and random forest (RF). The results showed that models for predicting sugarcane NT, PH, and SD using time series and ML algorithms had accurate and precise predictions. Blue, Green, and NIR spectral bands provided the best performance in predicting sugarcane biometric attributes. These findings expand the possibilities for using multispectral UAV imagery in predicting sugarcane yield, particularly by including biophysical parameters.
id UNSP_9e03cec6b1cc8a0513f1e7eb9d1a84bb
oai_identifier_str oai:repositorio.unesp.br:11449/249178
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learningdigital agriculturenumber of tillersplant heightspectral bandsstalk diameterMultispectral sensors onboard unmanned aerial vehicles (UAV) have proven accurate and fast to predict sugarcane yield. However, challenges to a reliable approach still exist. In this study, we propose to predict sugarcane biometric parameters by using machine learning (ML) algorithms and multitemporal data through the analysis of multispectral images from UAV onboard sensors. The research was conducted on five varieties of sugarcane, as a way to make a robust approach. Multispectral images were collected every 40 days and the evaluated biometric parameters were: number of tillers (NT), plant height (PH), and stalk diameter (SD). Two ML models were used: multiple linear regression (MLR) and random forest (RF). The results showed that models for predicting sugarcane NT, PH, and SD using time series and ML algorithms had accurate and precise predictions. Blue, Green, and NIR spectral bands provided the best performance in predicting sugarcane biometric attributes. These findings expand the possibilities for using multispectral UAV imagery in predicting sugarcane yield, particularly by including biophysical parameters.Department of Engineering and Exact Sciences School of Veterinarian and Agricultural Sciences São Paulo State University (Unesp), SPDepartment of Engineering and Exact Sciences School of Veterinarian and Agricultural Sciences São Paulo State University (Unesp), SPUniversidade Estadual Paulista (UNESP)de Oliveira, Romário Porto [UNESP]Barbosa Júnior, Marcelo Rodrigues [UNESP]Pinto, Antônio Alves [UNESP]Oliveira, Jean Lucas Pereira [UNESP]Zerbato, Cristiano [UNESP]Furlani, Carlos Eduardo Angeli [UNESP]2023-07-29T14:12:20Z2023-07-29T14:12:20Z2022-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/agronomy12091992Agronomy, v. 12, n. 9, 2022.2073-4395http://hdl.handle.net/11449/24917810.3390/agronomy120919922-s2.0-85138550444Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAgronomyinfo:eu-repo/semantics/openAccess2024-06-06T15:18:31Zoai:repositorio.unesp.br:11449/249178Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:11:45.564736Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
title Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
spellingShingle Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
de Oliveira, Romário Porto [UNESP]
digital agriculture
number of tillers
plant height
spectral bands
stalk diameter
title_short Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
title_full Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
title_fullStr Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
title_full_unstemmed Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
title_sort Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
author de Oliveira, Romário Porto [UNESP]
author_facet de Oliveira, Romário Porto [UNESP]
Barbosa Júnior, Marcelo Rodrigues [UNESP]
Pinto, Antônio Alves [UNESP]
Oliveira, Jean Lucas Pereira [UNESP]
Zerbato, Cristiano [UNESP]
Furlani, Carlos Eduardo Angeli [UNESP]
author_role author
author2 Barbosa Júnior, Marcelo Rodrigues [UNESP]
Pinto, Antônio Alves [UNESP]
Oliveira, Jean Lucas Pereira [UNESP]
Zerbato, Cristiano [UNESP]
Furlani, Carlos Eduardo Angeli [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv de Oliveira, Romário Porto [UNESP]
Barbosa Júnior, Marcelo Rodrigues [UNESP]
Pinto, Antônio Alves [UNESP]
Oliveira, Jean Lucas Pereira [UNESP]
Zerbato, Cristiano [UNESP]
Furlani, Carlos Eduardo Angeli [UNESP]
dc.subject.por.fl_str_mv digital agriculture
number of tillers
plant height
spectral bands
stalk diameter
topic digital agriculture
number of tillers
plant height
spectral bands
stalk diameter
description Multispectral sensors onboard unmanned aerial vehicles (UAV) have proven accurate and fast to predict sugarcane yield. However, challenges to a reliable approach still exist. In this study, we propose to predict sugarcane biometric parameters by using machine learning (ML) algorithms and multitemporal data through the analysis of multispectral images from UAV onboard sensors. The research was conducted on five varieties of sugarcane, as a way to make a robust approach. Multispectral images were collected every 40 days and the evaluated biometric parameters were: number of tillers (NT), plant height (PH), and stalk diameter (SD). Two ML models were used: multiple linear regression (MLR) and random forest (RF). The results showed that models for predicting sugarcane NT, PH, and SD using time series and ML algorithms had accurate and precise predictions. Blue, Green, and NIR spectral bands provided the best performance in predicting sugarcane biometric attributes. These findings expand the possibilities for using multispectral UAV imagery in predicting sugarcane yield, particularly by including biophysical parameters.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-01
2023-07-29T14:12:20Z
2023-07-29T14:12:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/agronomy12091992
Agronomy, v. 12, n. 9, 2022.
2073-4395
http://hdl.handle.net/11449/249178
10.3390/agronomy12091992
2-s2.0-85138550444
url http://dx.doi.org/10.3390/agronomy12091992
http://hdl.handle.net/11449/249178
identifier_str_mv Agronomy, v. 12, n. 9, 2022.
2073-4395
10.3390/agronomy12091992
2-s2.0-85138550444
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Agronomy
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129170415288320