Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/agronomy12091992 http://hdl.handle.net/11449/249178 |
Resumo: | Multispectral sensors onboard unmanned aerial vehicles (UAV) have proven accurate and fast to predict sugarcane yield. However, challenges to a reliable approach still exist. In this study, we propose to predict sugarcane biometric parameters by using machine learning (ML) algorithms and multitemporal data through the analysis of multispectral images from UAV onboard sensors. The research was conducted on five varieties of sugarcane, as a way to make a robust approach. Multispectral images were collected every 40 days and the evaluated biometric parameters were: number of tillers (NT), plant height (PH), and stalk diameter (SD). Two ML models were used: multiple linear regression (MLR) and random forest (RF). The results showed that models for predicting sugarcane NT, PH, and SD using time series and ML algorithms had accurate and precise predictions. Blue, Green, and NIR spectral bands provided the best performance in predicting sugarcane biometric attributes. These findings expand the possibilities for using multispectral UAV imagery in predicting sugarcane yield, particularly by including biophysical parameters. |
id |
UNSP_9e03cec6b1cc8a0513f1e7eb9d1a84bb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/249178 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learningdigital agriculturenumber of tillersplant heightspectral bandsstalk diameterMultispectral sensors onboard unmanned aerial vehicles (UAV) have proven accurate and fast to predict sugarcane yield. However, challenges to a reliable approach still exist. In this study, we propose to predict sugarcane biometric parameters by using machine learning (ML) algorithms and multitemporal data through the analysis of multispectral images from UAV onboard sensors. The research was conducted on five varieties of sugarcane, as a way to make a robust approach. Multispectral images were collected every 40 days and the evaluated biometric parameters were: number of tillers (NT), plant height (PH), and stalk diameter (SD). Two ML models were used: multiple linear regression (MLR) and random forest (RF). The results showed that models for predicting sugarcane NT, PH, and SD using time series and ML algorithms had accurate and precise predictions. Blue, Green, and NIR spectral bands provided the best performance in predicting sugarcane biometric attributes. These findings expand the possibilities for using multispectral UAV imagery in predicting sugarcane yield, particularly by including biophysical parameters.Department of Engineering and Exact Sciences School of Veterinarian and Agricultural Sciences São Paulo State University (Unesp), SPDepartment of Engineering and Exact Sciences School of Veterinarian and Agricultural Sciences São Paulo State University (Unesp), SPUniversidade Estadual Paulista (UNESP)de Oliveira, Romário Porto [UNESP]Barbosa Júnior, Marcelo Rodrigues [UNESP]Pinto, Antônio Alves [UNESP]Oliveira, Jean Lucas Pereira [UNESP]Zerbato, Cristiano [UNESP]Furlani, Carlos Eduardo Angeli [UNESP]2023-07-29T14:12:20Z2023-07-29T14:12:20Z2022-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/agronomy12091992Agronomy, v. 12, n. 9, 2022.2073-4395http://hdl.handle.net/11449/24917810.3390/agronomy120919922-s2.0-85138550444Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAgronomyinfo:eu-repo/semantics/openAccess2024-06-06T15:18:31Zoai:repositorio.unesp.br:11449/249178Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:11:45.564736Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning |
title |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning |
spellingShingle |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning de Oliveira, Romário Porto [UNESP] digital agriculture number of tillers plant height spectral bands stalk diameter |
title_short |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning |
title_full |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning |
title_fullStr |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning |
title_full_unstemmed |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning |
title_sort |
Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning |
author |
de Oliveira, Romário Porto [UNESP] |
author_facet |
de Oliveira, Romário Porto [UNESP] Barbosa Júnior, Marcelo Rodrigues [UNESP] Pinto, Antônio Alves [UNESP] Oliveira, Jean Lucas Pereira [UNESP] Zerbato, Cristiano [UNESP] Furlani, Carlos Eduardo Angeli [UNESP] |
author_role |
author |
author2 |
Barbosa Júnior, Marcelo Rodrigues [UNESP] Pinto, Antônio Alves [UNESP] Oliveira, Jean Lucas Pereira [UNESP] Zerbato, Cristiano [UNESP] Furlani, Carlos Eduardo Angeli [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
de Oliveira, Romário Porto [UNESP] Barbosa Júnior, Marcelo Rodrigues [UNESP] Pinto, Antônio Alves [UNESP] Oliveira, Jean Lucas Pereira [UNESP] Zerbato, Cristiano [UNESP] Furlani, Carlos Eduardo Angeli [UNESP] |
dc.subject.por.fl_str_mv |
digital agriculture number of tillers plant height spectral bands stalk diameter |
topic |
digital agriculture number of tillers plant height spectral bands stalk diameter |
description |
Multispectral sensors onboard unmanned aerial vehicles (UAV) have proven accurate and fast to predict sugarcane yield. However, challenges to a reliable approach still exist. In this study, we propose to predict sugarcane biometric parameters by using machine learning (ML) algorithms and multitemporal data through the analysis of multispectral images from UAV onboard sensors. The research was conducted on five varieties of sugarcane, as a way to make a robust approach. Multispectral images were collected every 40 days and the evaluated biometric parameters were: number of tillers (NT), plant height (PH), and stalk diameter (SD). Two ML models were used: multiple linear regression (MLR) and random forest (RF). The results showed that models for predicting sugarcane NT, PH, and SD using time series and ML algorithms had accurate and precise predictions. Blue, Green, and NIR spectral bands provided the best performance in predicting sugarcane biometric attributes. These findings expand the possibilities for using multispectral UAV imagery in predicting sugarcane yield, particularly by including biophysical parameters. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-01 2023-07-29T14:12:20Z 2023-07-29T14:12:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/agronomy12091992 Agronomy, v. 12, n. 9, 2022. 2073-4395 http://hdl.handle.net/11449/249178 10.3390/agronomy12091992 2-s2.0-85138550444 |
url |
http://dx.doi.org/10.3390/agronomy12091992 http://hdl.handle.net/11449/249178 |
identifier_str_mv |
Agronomy, v. 12, n. 9, 2022. 2073-4395 10.3390/agronomy12091992 2-s2.0-85138550444 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Agronomy |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129170415288320 |