Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field

Detalhes bibliográficos
Autor(a) principal: Cadorim, Leonardo Rodrigues [UNESP]
Data de Publicação: 2020
Outros Autores: de Oliveira Junior, Alexssandre, Sardella, Edson [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1038/s41598-020-75748-5
http://hdl.handle.net/11449/208088
Resumo: Within the framework of the generalized time-dependent Ginzburg–Landau equations, we studied the influence of the magnetic self-field induced by the currents inside a superconducting sample driven by an applied transport current. The numerical simulations of the resistive state of the system show that neither material inhomogeneity nor a normal contact smaller than the sample width are required to produce an inhomogeneous current distribution inside the sample, which leads to the emergence of a kinematic vortex–antivortex pair (vortex street) solution. Further, we discuss the behaviors of the kinematic vortex velocity, the annihilation rates of the supercurrent, and the superconducting order parameters alongside the vortex street solution. We prove that these two latter points explain the characteristics of the resistive state of the system. They are the fundamental basis to describe the peak of the current–resistance characteristic curve and the location where the vortex–antivortex pair is formed.
id UNSP_9e3e47fbb6897be5245eb4441721b696
oai_identifier_str oai:repositorio.unesp.br:11449/208088
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-fieldWithin the framework of the generalized time-dependent Ginzburg–Landau equations, we studied the influence of the magnetic self-field induced by the currents inside a superconducting sample driven by an applied transport current. The numerical simulations of the resistive state of the system show that neither material inhomogeneity nor a normal contact smaller than the sample width are required to produce an inhomogeneous current distribution inside the sample, which leads to the emergence of a kinematic vortex–antivortex pair (vortex street) solution. Further, we discuss the behaviors of the kinematic vortex velocity, the annihilation rates of the supercurrent, and the superconducting order parameters alongside the vortex street solution. We prove that these two latter points explain the characteristics of the resistive state of the system. They are the fundamental basis to describe the peak of the current–resistance characteristic curve and the location where the vortex–antivortex pair is formed.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Física Faculdade de Ciências Universidade Estadual Paulista (UNESP), Caixa Postal 473Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, P.O. Box 6165Departamento de Física Faculdade de Ciências Universidade Estadual Paulista (UNESP), Caixa Postal 473FAPESP: 12/04388-0FAPESP: 15/21189-0Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Cadorim, Leonardo Rodrigues [UNESP]de Oliveira Junior, AlexssandreSardella, Edson [UNESP]2021-06-25T11:06:10Z2021-06-25T11:06:10Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1038/s41598-020-75748-5Scientific Reports, v. 10, n. 1, 2020.2045-2322http://hdl.handle.net/11449/20808810.1038/s41598-020-75748-52-s2.0-85094215993Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengScientific Reportsinfo:eu-repo/semantics/openAccess2024-04-25T17:39:52Zoai:repositorio.unesp.br:11449/208088Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:14:03.625045Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
title Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
spellingShingle Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
Cadorim, Leonardo Rodrigues [UNESP]
title_short Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
title_full Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
title_fullStr Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
title_full_unstemmed Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
title_sort Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field
author Cadorim, Leonardo Rodrigues [UNESP]
author_facet Cadorim, Leonardo Rodrigues [UNESP]
de Oliveira Junior, Alexssandre
Sardella, Edson [UNESP]
author_role author
author2 de Oliveira Junior, Alexssandre
Sardella, Edson [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Cadorim, Leonardo Rodrigues [UNESP]
de Oliveira Junior, Alexssandre
Sardella, Edson [UNESP]
description Within the framework of the generalized time-dependent Ginzburg–Landau equations, we studied the influence of the magnetic self-field induced by the currents inside a superconducting sample driven by an applied transport current. The numerical simulations of the resistive state of the system show that neither material inhomogeneity nor a normal contact smaller than the sample width are required to produce an inhomogeneous current distribution inside the sample, which leads to the emergence of a kinematic vortex–antivortex pair (vortex street) solution. Further, we discuss the behaviors of the kinematic vortex velocity, the annihilation rates of the supercurrent, and the superconducting order parameters alongside the vortex street solution. We prove that these two latter points explain the characteristics of the resistive state of the system. They are the fundamental basis to describe the peak of the current–resistance characteristic curve and the location where the vortex–antivortex pair is formed.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
2021-06-25T11:06:10Z
2021-06-25T11:06:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1038/s41598-020-75748-5
Scientific Reports, v. 10, n. 1, 2020.
2045-2322
http://hdl.handle.net/11449/208088
10.1038/s41598-020-75748-5
2-s2.0-85094215993
url http://dx.doi.org/10.1038/s41598-020-75748-5
http://hdl.handle.net/11449/208088
identifier_str_mv Scientific Reports, v. 10, n. 1, 2020.
2045-2322
10.1038/s41598-020-75748-5
2-s2.0-85094215993
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Scientific Reports
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128910011924480