A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates

Detalhes bibliográficos
Autor(a) principal: Achcar, Jorge Alberto [UNESP]
Data de Publicação: 2015
Outros Autores: Moala, Fernando Antônio [UNESP], Tarumoto, Mario Hissamitsu [UNESP], Coladello, Leandro Fernandes [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/0101-7438.2015.035.01.0165
http://hdl.handle.net/11449/177361
Resumo: In this paper, we introduce a Bayesian analysis for a bivariate generalized exponential distribution in the presence of censored data and covariates derived from Copula functions. The generalized exponential distribution could be a good alternative to analyze lifetime data in comparison to usual existing parametric lifetime distributions as Weibull or Gamma distributions. We have being using standard existing MCMC (Markov Chain Monte Carlo) methods to simulate samples for the joint posterior of interest. Two examples are introduced to illustrate the proposed methodology: an example with simulated bivariate lifetime data and an example with a real lifetime data set.
id UNSP_9f6c61347e26c01f203860f415581ae9
oai_identifier_str oai:repositorio.unesp.br:11449/177361
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariatesBayesian analysisBivariate generalized exponential distributionCensored dataCopula functionCovariatesIn this paper, we introduce a Bayesian analysis for a bivariate generalized exponential distribution in the presence of censored data and covariates derived from Copula functions. The generalized exponential distribution could be a good alternative to analyze lifetime data in comparison to usual existing parametric lifetime distributions as Weibull or Gamma distributions. We have being using standard existing MCMC (Markov Chain Monte Carlo) methods to simulate samples for the joint posterior of interest. Two examples are introduced to illustrate the proposed methodology: an example with simulated bivariate lifetime data and an example with a real lifetime data set.Departamento de Matemática, Estatística e Computação, UNESP, Universidade Estadual PaulistaDepartamento de Medicina Social, FMRP, Universidade de São Paulo, Avenida Bandeirantes, 3900Departamento de Matemática, Estatística e Computação, UNESP, Universidade Estadual PaulistaUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Achcar, Jorge Alberto [UNESP]Moala, Fernando Antônio [UNESP]Tarumoto, Mario Hissamitsu [UNESP]Coladello, Leandro Fernandes [UNESP]2018-12-11T17:25:06Z2018-12-11T17:25:06Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article165-186application/pdfhttp://dx.doi.org/10.1590/0101-7438.2015.035.01.0165Pesquisa Operacional, v. 35, n. 1, p. 165-186, 2015.1678-51420101-7438http://hdl.handle.net/11449/17736110.1590/0101-7438.2015.035.01.0165S0101-743820150001001652-s2.0-84930410300S0101-74382015000100165.pdf16212695523666970000-0002-2445-0407Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPesquisa Operacional0,365info:eu-repo/semantics/openAccess2024-06-18T18:18:15Zoai:repositorio.unesp.br:11449/177361Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:17:02.259417Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
title A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
spellingShingle A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
Achcar, Jorge Alberto [UNESP]
Bayesian analysis
Bivariate generalized exponential distribution
Censored data
Copula function
Covariates
title_short A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
title_full A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
title_fullStr A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
title_full_unstemmed A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
title_sort A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
author Achcar, Jorge Alberto [UNESP]
author_facet Achcar, Jorge Alberto [UNESP]
Moala, Fernando Antônio [UNESP]
Tarumoto, Mario Hissamitsu [UNESP]
Coladello, Leandro Fernandes [UNESP]
author_role author
author2 Moala, Fernando Antônio [UNESP]
Tarumoto, Mario Hissamitsu [UNESP]
Coladello, Leandro Fernandes [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Achcar, Jorge Alberto [UNESP]
Moala, Fernando Antônio [UNESP]
Tarumoto, Mario Hissamitsu [UNESP]
Coladello, Leandro Fernandes [UNESP]
dc.subject.por.fl_str_mv Bayesian analysis
Bivariate generalized exponential distribution
Censored data
Copula function
Covariates
topic Bayesian analysis
Bivariate generalized exponential distribution
Censored data
Copula function
Covariates
description In this paper, we introduce a Bayesian analysis for a bivariate generalized exponential distribution in the presence of censored data and covariates derived from Copula functions. The generalized exponential distribution could be a good alternative to analyze lifetime data in comparison to usual existing parametric lifetime distributions as Weibull or Gamma distributions. We have being using standard existing MCMC (Markov Chain Monte Carlo) methods to simulate samples for the joint posterior of interest. Two examples are introduced to illustrate the proposed methodology: an example with simulated bivariate lifetime data and an example with a real lifetime data set.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-12-11T17:25:06Z
2018-12-11T17:25:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/0101-7438.2015.035.01.0165
Pesquisa Operacional, v. 35, n. 1, p. 165-186, 2015.
1678-5142
0101-7438
http://hdl.handle.net/11449/177361
10.1590/0101-7438.2015.035.01.0165
S0101-74382015000100165
2-s2.0-84930410300
S0101-74382015000100165.pdf
1621269552366697
0000-0002-2445-0407
url http://dx.doi.org/10.1590/0101-7438.2015.035.01.0165
http://hdl.handle.net/11449/177361
identifier_str_mv Pesquisa Operacional, v. 35, n. 1, p. 165-186, 2015.
1678-5142
0101-7438
10.1590/0101-7438.2015.035.01.0165
S0101-74382015000100165
2-s2.0-84930410300
S0101-74382015000100165.pdf
1621269552366697
0000-0002-2445-0407
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pesquisa Operacional
0,365
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 165-186
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129304759894016