A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/0101-7438.2015.035.01.0165 http://hdl.handle.net/11449/177361 |
Resumo: | In this paper, we introduce a Bayesian analysis for a bivariate generalized exponential distribution in the presence of censored data and covariates derived from Copula functions. The generalized exponential distribution could be a good alternative to analyze lifetime data in comparison to usual existing parametric lifetime distributions as Weibull or Gamma distributions. We have being using standard existing MCMC (Markov Chain Monte Carlo) methods to simulate samples for the joint posterior of interest. Two examples are introduced to illustrate the proposed methodology: an example with simulated bivariate lifetime data and an example with a real lifetime data set. |
id |
UNSP_9f6c61347e26c01f203860f415581ae9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/177361 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariatesBayesian analysisBivariate generalized exponential distributionCensored dataCopula functionCovariatesIn this paper, we introduce a Bayesian analysis for a bivariate generalized exponential distribution in the presence of censored data and covariates derived from Copula functions. The generalized exponential distribution could be a good alternative to analyze lifetime data in comparison to usual existing parametric lifetime distributions as Weibull or Gamma distributions. We have being using standard existing MCMC (Markov Chain Monte Carlo) methods to simulate samples for the joint posterior of interest. Two examples are introduced to illustrate the proposed methodology: an example with simulated bivariate lifetime data and an example with a real lifetime data set.Departamento de Matemática, Estatística e Computação, UNESP, Universidade Estadual PaulistaDepartamento de Medicina Social, FMRP, Universidade de São Paulo, Avenida Bandeirantes, 3900Departamento de Matemática, Estatística e Computação, UNESP, Universidade Estadual PaulistaUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Achcar, Jorge Alberto [UNESP]Moala, Fernando Antônio [UNESP]Tarumoto, Mario Hissamitsu [UNESP]Coladello, Leandro Fernandes [UNESP]2018-12-11T17:25:06Z2018-12-11T17:25:06Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article165-186application/pdfhttp://dx.doi.org/10.1590/0101-7438.2015.035.01.0165Pesquisa Operacional, v. 35, n. 1, p. 165-186, 2015.1678-51420101-7438http://hdl.handle.net/11449/17736110.1590/0101-7438.2015.035.01.0165S0101-743820150001001652-s2.0-84930410300S0101-74382015000100165.pdf16212695523666970000-0002-2445-0407Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPesquisa Operacional0,365info:eu-repo/semantics/openAccess2024-06-18T18:18:15Zoai:repositorio.unesp.br:11449/177361Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:17:02.259417Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates |
title |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates |
spellingShingle |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates Achcar, Jorge Alberto [UNESP] Bayesian analysis Bivariate generalized exponential distribution Censored data Copula function Covariates |
title_short |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates |
title_full |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates |
title_fullStr |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates |
title_full_unstemmed |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates |
title_sort |
A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates |
author |
Achcar, Jorge Alberto [UNESP] |
author_facet |
Achcar, Jorge Alberto [UNESP] Moala, Fernando Antônio [UNESP] Tarumoto, Mario Hissamitsu [UNESP] Coladello, Leandro Fernandes [UNESP] |
author_role |
author |
author2 |
Moala, Fernando Antônio [UNESP] Tarumoto, Mario Hissamitsu [UNESP] Coladello, Leandro Fernandes [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Achcar, Jorge Alberto [UNESP] Moala, Fernando Antônio [UNESP] Tarumoto, Mario Hissamitsu [UNESP] Coladello, Leandro Fernandes [UNESP] |
dc.subject.por.fl_str_mv |
Bayesian analysis Bivariate generalized exponential distribution Censored data Copula function Covariates |
topic |
Bayesian analysis Bivariate generalized exponential distribution Censored data Copula function Covariates |
description |
In this paper, we introduce a Bayesian analysis for a bivariate generalized exponential distribution in the presence of censored data and covariates derived from Copula functions. The generalized exponential distribution could be a good alternative to analyze lifetime data in comparison to usual existing parametric lifetime distributions as Weibull or Gamma distributions. We have being using standard existing MCMC (Markov Chain Monte Carlo) methods to simulate samples for the joint posterior of interest. Two examples are introduced to illustrate the proposed methodology: an example with simulated bivariate lifetime data and an example with a real lifetime data set. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-12-11T17:25:06Z 2018-12-11T17:25:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/0101-7438.2015.035.01.0165 Pesquisa Operacional, v. 35, n. 1, p. 165-186, 2015. 1678-5142 0101-7438 http://hdl.handle.net/11449/177361 10.1590/0101-7438.2015.035.01.0165 S0101-74382015000100165 2-s2.0-84930410300 S0101-74382015000100165.pdf 1621269552366697 0000-0002-2445-0407 |
url |
http://dx.doi.org/10.1590/0101-7438.2015.035.01.0165 http://hdl.handle.net/11449/177361 |
identifier_str_mv |
Pesquisa Operacional, v. 35, n. 1, p. 165-186, 2015. 1678-5142 0101-7438 10.1590/0101-7438.2015.035.01.0165 S0101-74382015000100165 2-s2.0-84930410300 S0101-74382015000100165.pdf 1621269552366697 0000-0002-2445-0407 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pesquisa Operacional 0,365 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
165-186 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129304759894016 |