Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures

Detalhes bibliográficos
Autor(a) principal: Da Silva, Samuel [UNESP]
Data de Publicação: 2022
Outros Autores: Villani, Luis G.G., Rébillat, Marc, Mechbal, Nazih
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1115/1.4052956
http://hdl.handle.net/11449/230645
Resumo: This article demonstrates the Gaussian process regression model's applicability combined with a nonlinear autoregressive exogenous (NARX) framework using experimental data measured with PZTs' patches bonded in a composite aeronautical structure for concerning a novel structural health monitoring (SHM) strategy. A stiffened carbon-epoxy plate regarding a healthy condition and simulated damage on the center of the bottom part of the stiffener is utilized. Comparing the performance in terms of simulation errors is made to observe if the identified models can represent and predict the waveform with confidence bounds considering the confounding effect produced by noise or possible temperature variations assuming a dataset preprocessed using principal component analysis. The results of the GP-NARX identified model have attested correct classification with a reduced number of false alarms, even with model uncertainties propagation regarding healthy and damaged conditions.
id UNSP_9fe5806a72c601f544127544d4dbd941
oai_identifier_str oai:repositorio.unesp.br:11449/230645
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structurescomposite structuresdamage classificationdiagnostic decision supportdiagnostic feature extractionGaussian processguided wave propagationNARX modelnonlinear damageprognosispropagation of uncertaintiesstiffener debondingstructural engineeringtesting methodologieswave propagation modelingThis article demonstrates the Gaussian process regression model's applicability combined with a nonlinear autoregressive exogenous (NARX) framework using experimental data measured with PZTs' patches bonded in a composite aeronautical structure for concerning a novel structural health monitoring (SHM) strategy. A stiffened carbon-epoxy plate regarding a healthy condition and simulated damage on the center of the bottom part of the stiffener is utilized. Comparing the performance in terms of simulation errors is made to observe if the identified models can represent and predict the waveform with confidence bounds considering the confounding effect produced by noise or possible temperature variations assuming a dataset preprocessed using principal component analysis. The results of the GP-NARX identified model have attested correct classification with a reduced number of false alarms, even with model uncertainties propagation regarding healthy and damaged conditions.Departamento de Engenharia Mecânica Faculdade de Engenharia de Ilha Solteira UNESP - Universidade Estadual Paulista, SPDepartamento de Engenharia Mecânica Centro Tecnológico UFES - Universidade Federal Do Espiríto Santo, Vitoría, Espiríto SantoPIMM Laboratory Arts et Métiers ENSAM CNRS CNAMDepartamento de Engenharia Mecânica Faculdade de Engenharia de Ilha Solteira UNESP - Universidade Estadual Paulista, SPUniversidade Estadual Paulista (UNESP)UFES - Universidade Federal Do Espiríto SantoCNAMDa Silva, Samuel [UNESP]Villani, Luis G.G.Rébillat, MarcMechbal, Nazih2022-04-29T08:41:21Z2022-04-29T08:41:21Z2022-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1115/1.4052956Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, v. 5, n. 1, 2022.2572-38982572-3901http://hdl.handle.net/11449/23064510.1115/1.40529562-s2.0-85127220967Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systemsinfo:eu-repo/semantics/openAccess2024-07-04T20:06:15Zoai:repositorio.unesp.br:11449/230645Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:35:28.126734Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
title Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
spellingShingle Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
Da Silva, Samuel [UNESP]
composite structures
damage classification
diagnostic decision support
diagnostic feature extraction
Gaussian process
guided wave propagation
NARX model
nonlinear damage
prognosis
propagation of uncertainties
stiffener debonding
structural engineering
testing methodologies
wave propagation modeling
title_short Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
title_full Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
title_fullStr Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
title_full_unstemmed Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
title_sort Gaussian Process NARX Model for Damage Detection in Composite Aircraft Structures
author Da Silva, Samuel [UNESP]
author_facet Da Silva, Samuel [UNESP]
Villani, Luis G.G.
Rébillat, Marc
Mechbal, Nazih
author_role author
author2 Villani, Luis G.G.
Rébillat, Marc
Mechbal, Nazih
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
UFES - Universidade Federal Do Espiríto Santo
CNAM
dc.contributor.author.fl_str_mv Da Silva, Samuel [UNESP]
Villani, Luis G.G.
Rébillat, Marc
Mechbal, Nazih
dc.subject.por.fl_str_mv composite structures
damage classification
diagnostic decision support
diagnostic feature extraction
Gaussian process
guided wave propagation
NARX model
nonlinear damage
prognosis
propagation of uncertainties
stiffener debonding
structural engineering
testing methodologies
wave propagation modeling
topic composite structures
damage classification
diagnostic decision support
diagnostic feature extraction
Gaussian process
guided wave propagation
NARX model
nonlinear damage
prognosis
propagation of uncertainties
stiffener debonding
structural engineering
testing methodologies
wave propagation modeling
description This article demonstrates the Gaussian process regression model's applicability combined with a nonlinear autoregressive exogenous (NARX) framework using experimental data measured with PZTs' patches bonded in a composite aeronautical structure for concerning a novel structural health monitoring (SHM) strategy. A stiffened carbon-epoxy plate regarding a healthy condition and simulated damage on the center of the bottom part of the stiffener is utilized. Comparing the performance in terms of simulation errors is made to observe if the identified models can represent and predict the waveform with confidence bounds considering the confounding effect produced by noise or possible temperature variations assuming a dataset preprocessed using principal component analysis. The results of the GP-NARX identified model have attested correct classification with a reduced number of false alarms, even with model uncertainties propagation regarding healthy and damaged conditions.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-29T08:41:21Z
2022-04-29T08:41:21Z
2022-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1115/1.4052956
Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, v. 5, n. 1, 2022.
2572-3898
2572-3901
http://hdl.handle.net/11449/230645
10.1115/1.4052956
2-s2.0-85127220967
url http://dx.doi.org/10.1115/1.4052956
http://hdl.handle.net/11449/230645
identifier_str_mv Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, v. 5, n. 1, 2022.
2572-3898
2572-3901
10.1115/1.4052956
2-s2.0-85127220967
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129092499800064