Global stability analysis of a fractional differential system in hepatitis B

Detalhes bibliográficos
Autor(a) principal: Cardoso, Lislaine Cristina
Data de Publicação: 2021
Outros Autores: Camargo, Rubens Figueiredo [UNESP], dos Santos, Fernando Luiz Pio [UNESP], Dos Santos, José Paulo Carvalho
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.chaos.2020.110619
http://hdl.handle.net/11449/205718
Resumo: This paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis.
id UNSP_a0dcf8aa5f0058b27fb485029b5de969
oai_identifier_str oai:repositorio.unesp.br:11449/205718
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Global stability analysis of a fractional differential system in hepatitis BBarbalat's lemmaFractional modelingGlobal stabilityHepatitis BStability analysisThis paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis.Department of Exact and Technologies Sciences – FACET Great Dourados Federal University, UFGD, Av. Dourados/ItahumInstitute of Sciences – FC Department of Applied Mathematics São Paulo State University – UNESP. Av. Eng. Luís Edmundo Carrijo Coube 2085Institute of Biosciences of Botucatu- IBB São Paulo State University – UNESP District of Rubião JuniorDepartment of Mathematics Alfenas Federal University – UNIFAL., Av. Gabriel Monteiro da SilvaInstitute of Sciences – FC Department of Applied Mathematics São Paulo State University – UNESP. Av. Eng. Luís Edmundo Carrijo Coube 2085Institute of Biosciences of Botucatu- IBB São Paulo State University – UNESP District of Rubião JuniorGreat Dourados Federal UniversityUniversidade Estadual Paulista (Unesp)Alfenas Federal University – UNIFAL.Cardoso, Lislaine CristinaCamargo, Rubens Figueiredo [UNESP]dos Santos, Fernando Luiz Pio [UNESP]Dos Santos, José Paulo Carvalho2021-06-25T10:20:08Z2021-06-25T10:20:08Z2021-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.chaos.2020.110619Chaos, Solitons and Fractals, v. 143.0960-0779http://hdl.handle.net/11449/20571810.1016/j.chaos.2020.1106192-s2.0-85099236828Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaos, Solitons and Fractalsinfo:eu-repo/semantics/openAccess2021-10-22T14:03:01Zoai:repositorio.unesp.br:11449/205718Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:05:09.430883Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Global stability analysis of a fractional differential system in hepatitis B
title Global stability analysis of a fractional differential system in hepatitis B
spellingShingle Global stability analysis of a fractional differential system in hepatitis B
Cardoso, Lislaine Cristina
Barbalat's lemma
Fractional modeling
Global stability
Hepatitis B
Stability analysis
title_short Global stability analysis of a fractional differential system in hepatitis B
title_full Global stability analysis of a fractional differential system in hepatitis B
title_fullStr Global stability analysis of a fractional differential system in hepatitis B
title_full_unstemmed Global stability analysis of a fractional differential system in hepatitis B
title_sort Global stability analysis of a fractional differential system in hepatitis B
author Cardoso, Lislaine Cristina
author_facet Cardoso, Lislaine Cristina
Camargo, Rubens Figueiredo [UNESP]
dos Santos, Fernando Luiz Pio [UNESP]
Dos Santos, José Paulo Carvalho
author_role author
author2 Camargo, Rubens Figueiredo [UNESP]
dos Santos, Fernando Luiz Pio [UNESP]
Dos Santos, José Paulo Carvalho
author2_role author
author
author
dc.contributor.none.fl_str_mv Great Dourados Federal University
Universidade Estadual Paulista (Unesp)
Alfenas Federal University – UNIFAL.
dc.contributor.author.fl_str_mv Cardoso, Lislaine Cristina
Camargo, Rubens Figueiredo [UNESP]
dos Santos, Fernando Luiz Pio [UNESP]
Dos Santos, José Paulo Carvalho
dc.subject.por.fl_str_mv Barbalat's lemma
Fractional modeling
Global stability
Hepatitis B
Stability analysis
topic Barbalat's lemma
Fractional modeling
Global stability
Hepatitis B
Stability analysis
description This paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:20:08Z
2021-06-25T10:20:08Z
2021-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.chaos.2020.110619
Chaos, Solitons and Fractals, v. 143.
0960-0779
http://hdl.handle.net/11449/205718
10.1016/j.chaos.2020.110619
2-s2.0-85099236828
url http://dx.doi.org/10.1016/j.chaos.2020.110619
http://hdl.handle.net/11449/205718
identifier_str_mv Chaos, Solitons and Fractals, v. 143.
0960-0779
10.1016/j.chaos.2020.110619
2-s2.0-85099236828
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaos, Solitons and Fractals
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128753039048704