Global stability analysis of a fractional differential system in hepatitis B
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.chaos.2020.110619 http://hdl.handle.net/11449/205718 |
Resumo: | This paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis. |
id |
UNSP_a0dcf8aa5f0058b27fb485029b5de969 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/205718 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Global stability analysis of a fractional differential system in hepatitis BBarbalat's lemmaFractional modelingGlobal stabilityHepatitis BStability analysisThis paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis.Department of Exact and Technologies Sciences – FACET Great Dourados Federal University, UFGD, Av. Dourados/ItahumInstitute of Sciences – FC Department of Applied Mathematics São Paulo State University – UNESP. Av. Eng. Luís Edmundo Carrijo Coube 2085Institute of Biosciences of Botucatu- IBB São Paulo State University – UNESP District of Rubião JuniorDepartment of Mathematics Alfenas Federal University – UNIFAL., Av. Gabriel Monteiro da SilvaInstitute of Sciences – FC Department of Applied Mathematics São Paulo State University – UNESP. Av. Eng. Luís Edmundo Carrijo Coube 2085Institute of Biosciences of Botucatu- IBB São Paulo State University – UNESP District of Rubião JuniorGreat Dourados Federal UniversityUniversidade Estadual Paulista (Unesp)Alfenas Federal University – UNIFAL.Cardoso, Lislaine CristinaCamargo, Rubens Figueiredo [UNESP]dos Santos, Fernando Luiz Pio [UNESP]Dos Santos, José Paulo Carvalho2021-06-25T10:20:08Z2021-06-25T10:20:08Z2021-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.chaos.2020.110619Chaos, Solitons and Fractals, v. 143.0960-0779http://hdl.handle.net/11449/20571810.1016/j.chaos.2020.1106192-s2.0-85099236828Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaos, Solitons and Fractalsinfo:eu-repo/semantics/openAccess2021-10-22T14:03:01Zoai:repositorio.unesp.br:11449/205718Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:05:09.430883Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Global stability analysis of a fractional differential system in hepatitis B |
title |
Global stability analysis of a fractional differential system in hepatitis B |
spellingShingle |
Global stability analysis of a fractional differential system in hepatitis B Cardoso, Lislaine Cristina Barbalat's lemma Fractional modeling Global stability Hepatitis B Stability analysis |
title_short |
Global stability analysis of a fractional differential system in hepatitis B |
title_full |
Global stability analysis of a fractional differential system in hepatitis B |
title_fullStr |
Global stability analysis of a fractional differential system in hepatitis B |
title_full_unstemmed |
Global stability analysis of a fractional differential system in hepatitis B |
title_sort |
Global stability analysis of a fractional differential system in hepatitis B |
author |
Cardoso, Lislaine Cristina |
author_facet |
Cardoso, Lislaine Cristina Camargo, Rubens Figueiredo [UNESP] dos Santos, Fernando Luiz Pio [UNESP] Dos Santos, José Paulo Carvalho |
author_role |
author |
author2 |
Camargo, Rubens Figueiredo [UNESP] dos Santos, Fernando Luiz Pio [UNESP] Dos Santos, José Paulo Carvalho |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Great Dourados Federal University Universidade Estadual Paulista (Unesp) Alfenas Federal University – UNIFAL. |
dc.contributor.author.fl_str_mv |
Cardoso, Lislaine Cristina Camargo, Rubens Figueiredo [UNESP] dos Santos, Fernando Luiz Pio [UNESP] Dos Santos, José Paulo Carvalho |
dc.subject.por.fl_str_mv |
Barbalat's lemma Fractional modeling Global stability Hepatitis B Stability analysis |
topic |
Barbalat's lemma Fractional modeling Global stability Hepatitis B Stability analysis |
description |
This paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:20:08Z 2021-06-25T10:20:08Z 2021-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.chaos.2020.110619 Chaos, Solitons and Fractals, v. 143. 0960-0779 http://hdl.handle.net/11449/205718 10.1016/j.chaos.2020.110619 2-s2.0-85099236828 |
url |
http://dx.doi.org/10.1016/j.chaos.2020.110619 http://hdl.handle.net/11449/205718 |
identifier_str_mv |
Chaos, Solitons and Fractals, v. 143. 0960-0779 10.1016/j.chaos.2020.110619 2-s2.0-85099236828 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chaos, Solitons and Fractals |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128753039048704 |