Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique

Detalhes bibliográficos
Autor(a) principal: Tangune, Bartolomeu Félix
Data de Publicação: 2019
Outros Autores: Román, E Rodrigo Máximo Sánchez [UNESP]
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.15809/irriga.2019v24n4p802-816
http://hdl.handle.net/11449/200198
Resumo: Precise estimation of reference evapotranspiration (ETo) is important for designing and managing irrigation systems. Methods of ETo estimation (11 empirical methods, 10 multiple regression models: RLM and 10 artificial neural networks: RNAs) were evaluated against Penman Monteith FAO 56 method using the following indexes: MBE (Mean Bias Error), RMSE (Root Mean Square Error) and R2, and RMSE was used as the main criterion of method selection. The significance of the methods was evaluated on the basis of the t test using data from 1985 to 2009. The meteorological data used (maximum temperature: Tmax, minimum temperature: Tmin and average temperature: T, relative air humidity, wind speed and solar brightness), from 1985 to 2009, are from the conventional meteorological station of the city of Inhambane, Mozambique. The results showed that the RLM4 model presented better performance (MBE = 0.01 mm.d-1; RMSE = 0.15 mm.d-1; R2 = 0.99). In the absence of global solar radiation, RLM6 (MBE =-0.01 mm.d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) and RLM10 (MBE = 0.01 mm. d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) can be used, which require measurement of T, and Tmax and Tmin, respectively. These models were not statistically different from the standard method.
id UNSP_a24e3d5f5449c30106ed81787991b85c
oai_identifier_str oai:repositorio.unesp.br:11449/200198
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, MozambiqueRedes neurais artificiais, regressão e métodos empíricos para a modelagem da evapotranspiração de referência na cidade de Inhambane, MoçambiqueEvapotranspirationMultiple regressionNeural networksPrecise estimation of reference evapotranspiration (ETo) is important for designing and managing irrigation systems. Methods of ETo estimation (11 empirical methods, 10 multiple regression models: RLM and 10 artificial neural networks: RNAs) were evaluated against Penman Monteith FAO 56 method using the following indexes: MBE (Mean Bias Error), RMSE (Root Mean Square Error) and R2, and RMSE was used as the main criterion of method selection. The significance of the methods was evaluated on the basis of the t test using data from 1985 to 2009. The meteorological data used (maximum temperature: Tmax, minimum temperature: Tmin and average temperature: T, relative air humidity, wind speed and solar brightness), from 1985 to 2009, are from the conventional meteorological station of the city of Inhambane, Mozambique. The results showed that the RLM4 model presented better performance (MBE = 0.01 mm.d-1; RMSE = 0.15 mm.d-1; R2 = 0.99). In the absence of global solar radiation, RLM6 (MBE =-0.01 mm.d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) and RLM10 (MBE = 0.01 mm. d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) can be used, which require measurement of T, and Tmax and Tmin, respectively. These models were not statistically different from the standard method.Departamento de Engenharia Rural Escola Superior de Desenvolvimento Rural Universidade Eduardo MondlaneDepartamento de Engenharia Rural Faculdade de Ciências Agronômicas Universidade Estadual Paulista (UNESP), Campus de Botucatu. Fazenda Experimental Lageado, Avenida Universitária, nº 3780, Altos do ParaísoDepartamento de Engenharia Rural Faculdade de Ciências Agronômicas Universidade Estadual Paulista (UNESP), Campus de Botucatu. Fazenda Experimental Lageado, Avenida Universitária, nº 3780, Altos do ParaísoUniversidade Eduardo MondlaneUniversidade Estadual Paulista (Unesp)Tangune, Bartolomeu FélixRomán, E Rodrigo Máximo Sánchez [UNESP]2020-12-12T02:00:12Z2020-12-12T02:00:12Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article802-816http://dx.doi.org/10.15809/irriga.2019v24n4p802-816IRRIGA, v. 24, n. 4, p. 802-816, 2019.1808-37651413-7895http://hdl.handle.net/11449/20019810.15809/irriga.2019v24n4p802-8162-s2.0-85082141313Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIRRIGAinfo:eu-repo/semantics/openAccess2024-04-30T14:02:50Zoai:repositorio.unesp.br:11449/200198Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:36:04.607441Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
Redes neurais artificiais, regressão e métodos empíricos para a modelagem da evapotranspiração de referência na cidade de Inhambane, Moçambique
title Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
spellingShingle Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
Tangune, Bartolomeu Félix
Evapotranspiration
Multiple regression
Neural networks
title_short Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
title_full Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
title_fullStr Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
title_full_unstemmed Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
title_sort Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
author Tangune, Bartolomeu Félix
author_facet Tangune, Bartolomeu Félix
Román, E Rodrigo Máximo Sánchez [UNESP]
author_role author
author2 Román, E Rodrigo Máximo Sánchez [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Eduardo Mondlane
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Tangune, Bartolomeu Félix
Román, E Rodrigo Máximo Sánchez [UNESP]
dc.subject.por.fl_str_mv Evapotranspiration
Multiple regression
Neural networks
topic Evapotranspiration
Multiple regression
Neural networks
description Precise estimation of reference evapotranspiration (ETo) is important for designing and managing irrigation systems. Methods of ETo estimation (11 empirical methods, 10 multiple regression models: RLM and 10 artificial neural networks: RNAs) were evaluated against Penman Monteith FAO 56 method using the following indexes: MBE (Mean Bias Error), RMSE (Root Mean Square Error) and R2, and RMSE was used as the main criterion of method selection. The significance of the methods was evaluated on the basis of the t test using data from 1985 to 2009. The meteorological data used (maximum temperature: Tmax, minimum temperature: Tmin and average temperature: T, relative air humidity, wind speed and solar brightness), from 1985 to 2009, are from the conventional meteorological station of the city of Inhambane, Mozambique. The results showed that the RLM4 model presented better performance (MBE = 0.01 mm.d-1; RMSE = 0.15 mm.d-1; R2 = 0.99). In the absence of global solar radiation, RLM6 (MBE =-0.01 mm.d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) and RLM10 (MBE = 0.01 mm. d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) can be used, which require measurement of T, and Tmax and Tmin, respectively. These models were not statistically different from the standard method.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
2020-12-12T02:00:12Z
2020-12-12T02:00:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.15809/irriga.2019v24n4p802-816
IRRIGA, v. 24, n. 4, p. 802-816, 2019.
1808-3765
1413-7895
http://hdl.handle.net/11449/200198
10.15809/irriga.2019v24n4p802-816
2-s2.0-85082141313
url http://dx.doi.org/10.15809/irriga.2019v24n4p802-816
http://hdl.handle.net/11449/200198
identifier_str_mv IRRIGA, v. 24, n. 4, p. 802-816, 2019.
1808-3765
1413-7895
10.15809/irriga.2019v24n4p802-816
2-s2.0-85082141313
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv IRRIGA
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 802-816
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129535343853568