Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.15809/irriga.2019v24n4p802-816 http://hdl.handle.net/11449/200198 |
Resumo: | Precise estimation of reference evapotranspiration (ETo) is important for designing and managing irrigation systems. Methods of ETo estimation (11 empirical methods, 10 multiple regression models: RLM and 10 artificial neural networks: RNAs) were evaluated against Penman Monteith FAO 56 method using the following indexes: MBE (Mean Bias Error), RMSE (Root Mean Square Error) and R2, and RMSE was used as the main criterion of method selection. The significance of the methods was evaluated on the basis of the t test using data from 1985 to 2009. The meteorological data used (maximum temperature: Tmax, minimum temperature: Tmin and average temperature: T, relative air humidity, wind speed and solar brightness), from 1985 to 2009, are from the conventional meteorological station of the city of Inhambane, Mozambique. The results showed that the RLM4 model presented better performance (MBE = 0.01 mm.d-1; RMSE = 0.15 mm.d-1; R2 = 0.99). In the absence of global solar radiation, RLM6 (MBE =-0.01 mm.d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) and RLM10 (MBE = 0.01 mm. d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) can be used, which require measurement of T, and Tmax and Tmin, respectively. These models were not statistically different from the standard method. |
id |
UNSP_a24e3d5f5449c30106ed81787991b85c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/200198 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, MozambiqueRedes neurais artificiais, regressão e métodos empíricos para a modelagem da evapotranspiração de referência na cidade de Inhambane, MoçambiqueEvapotranspirationMultiple regressionNeural networksPrecise estimation of reference evapotranspiration (ETo) is important for designing and managing irrigation systems. Methods of ETo estimation (11 empirical methods, 10 multiple regression models: RLM and 10 artificial neural networks: RNAs) were evaluated against Penman Monteith FAO 56 method using the following indexes: MBE (Mean Bias Error), RMSE (Root Mean Square Error) and R2, and RMSE was used as the main criterion of method selection. The significance of the methods was evaluated on the basis of the t test using data from 1985 to 2009. The meteorological data used (maximum temperature: Tmax, minimum temperature: Tmin and average temperature: T, relative air humidity, wind speed and solar brightness), from 1985 to 2009, are from the conventional meteorological station of the city of Inhambane, Mozambique. The results showed that the RLM4 model presented better performance (MBE = 0.01 mm.d-1; RMSE = 0.15 mm.d-1; R2 = 0.99). In the absence of global solar radiation, RLM6 (MBE =-0.01 mm.d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) and RLM10 (MBE = 0.01 mm. d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) can be used, which require measurement of T, and Tmax and Tmin, respectively. These models were not statistically different from the standard method.Departamento de Engenharia Rural Escola Superior de Desenvolvimento Rural Universidade Eduardo MondlaneDepartamento de Engenharia Rural Faculdade de Ciências Agronômicas Universidade Estadual Paulista (UNESP), Campus de Botucatu. Fazenda Experimental Lageado, Avenida Universitária, nº 3780, Altos do ParaísoDepartamento de Engenharia Rural Faculdade de Ciências Agronômicas Universidade Estadual Paulista (UNESP), Campus de Botucatu. Fazenda Experimental Lageado, Avenida Universitária, nº 3780, Altos do ParaísoUniversidade Eduardo MondlaneUniversidade Estadual Paulista (Unesp)Tangune, Bartolomeu FélixRomán, E Rodrigo Máximo Sánchez [UNESP]2020-12-12T02:00:12Z2020-12-12T02:00:12Z2019-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article802-816http://dx.doi.org/10.15809/irriga.2019v24n4p802-816IRRIGA, v. 24, n. 4, p. 802-816, 2019.1808-37651413-7895http://hdl.handle.net/11449/20019810.15809/irriga.2019v24n4p802-8162-s2.0-85082141313Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIRRIGAinfo:eu-repo/semantics/openAccess2024-04-30T14:02:50Zoai:repositorio.unesp.br:11449/200198Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:36:04.607441Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique Redes neurais artificiais, regressão e métodos empíricos para a modelagem da evapotranspiração de referência na cidade de Inhambane, Moçambique |
title |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique |
spellingShingle |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique Tangune, Bartolomeu Félix Evapotranspiration Multiple regression Neural networks |
title_short |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique |
title_full |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique |
title_fullStr |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique |
title_full_unstemmed |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique |
title_sort |
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique |
author |
Tangune, Bartolomeu Félix |
author_facet |
Tangune, Bartolomeu Félix Román, E Rodrigo Máximo Sánchez [UNESP] |
author_role |
author |
author2 |
Román, E Rodrigo Máximo Sánchez [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Eduardo Mondlane Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Tangune, Bartolomeu Félix Román, E Rodrigo Máximo Sánchez [UNESP] |
dc.subject.por.fl_str_mv |
Evapotranspiration Multiple regression Neural networks |
topic |
Evapotranspiration Multiple regression Neural networks |
description |
Precise estimation of reference evapotranspiration (ETo) is important for designing and managing irrigation systems. Methods of ETo estimation (11 empirical methods, 10 multiple regression models: RLM and 10 artificial neural networks: RNAs) were evaluated against Penman Monteith FAO 56 method using the following indexes: MBE (Mean Bias Error), RMSE (Root Mean Square Error) and R2, and RMSE was used as the main criterion of method selection. The significance of the methods was evaluated on the basis of the t test using data from 1985 to 2009. The meteorological data used (maximum temperature: Tmax, minimum temperature: Tmin and average temperature: T, relative air humidity, wind speed and solar brightness), from 1985 to 2009, are from the conventional meteorological station of the city of Inhambane, Mozambique. The results showed that the RLM4 model presented better performance (MBE = 0.01 mm.d-1; RMSE = 0.15 mm.d-1; R2 = 0.99). In the absence of global solar radiation, RLM6 (MBE =-0.01 mm.d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) and RLM10 (MBE = 0.01 mm. d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) can be used, which require measurement of T, and Tmax and Tmin, respectively. These models were not statistically different from the standard method. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 2020-12-12T02:00:12Z 2020-12-12T02:00:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.15809/irriga.2019v24n4p802-816 IRRIGA, v. 24, n. 4, p. 802-816, 2019. 1808-3765 1413-7895 http://hdl.handle.net/11449/200198 10.15809/irriga.2019v24n4p802-816 2-s2.0-85082141313 |
url |
http://dx.doi.org/10.15809/irriga.2019v24n4p802-816 http://hdl.handle.net/11449/200198 |
identifier_str_mv |
IRRIGA, v. 24, n. 4, p. 802-816, 2019. 1808-3765 1413-7895 10.15809/irriga.2019v24n4p802-816 2-s2.0-85082141313 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
IRRIGA |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
802-816 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129535343853568 |