On the denominator values and barycentric weights of rational interpolants

Detalhes bibliográficos
Autor(a) principal: Polezzi, M.
Data de Publicação: 2007
Outros Autores: Ranga, A. Sri
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.cam.2006.01.013
http://hdl.handle.net/11449/35282
Resumo: We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved.
id UNSP_a36b4c4992d215e4152fd6b15d956f28
oai_identifier_str oai:repositorio.unesp.br:11449/35282
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the denominator values and barycentric weights of rational interpolantsinterpolationrational interpolantsdenominator valuesbarycentric weightsWe improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved.UEMS, Cassilandia, MS, BrazilUniv Estadual Paulista, DCCE IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUniv Estadual Paulista, DCCE IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual de Mato Grosso do Sul (UEMS)Universidade Estadual Paulista (Unesp)Polezzi, M.Ranga, A. Sri2014-05-20T15:24:43Z2014-05-20T15:24:43Z2007-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article576-590application/pdfhttp://dx.doi.org/10.1016/j.cam.2006.01.013Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007.0377-0427http://hdl.handle.net/11449/3528210.1016/j.cam.2006.01.013WOS:000244279500010WOS000244279500010.pdf3587123309745610Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Computational and Applied Mathematics1.6320,938info:eu-repo/semantics/openAccess2023-12-29T06:16:50Zoai:repositorio.unesp.br:11449/35282Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:34:16.358361Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the denominator values and barycentric weights of rational interpolants
title On the denominator values and barycentric weights of rational interpolants
spellingShingle On the denominator values and barycentric weights of rational interpolants
Polezzi, M.
interpolation
rational interpolants
denominator values
barycentric weights
title_short On the denominator values and barycentric weights of rational interpolants
title_full On the denominator values and barycentric weights of rational interpolants
title_fullStr On the denominator values and barycentric weights of rational interpolants
title_full_unstemmed On the denominator values and barycentric weights of rational interpolants
title_sort On the denominator values and barycentric weights of rational interpolants
author Polezzi, M.
author_facet Polezzi, M.
Ranga, A. Sri
author_role author
author2 Ranga, A. Sri
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual de Mato Grosso do Sul (UEMS)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Polezzi, M.
Ranga, A. Sri
dc.subject.por.fl_str_mv interpolation
rational interpolants
denominator values
barycentric weights
topic interpolation
rational interpolants
denominator values
barycentric weights
description We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved.
publishDate 2007
dc.date.none.fl_str_mv 2007-03-15
2014-05-20T15:24:43Z
2014-05-20T15:24:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.cam.2006.01.013
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007.
0377-0427
http://hdl.handle.net/11449/35282
10.1016/j.cam.2006.01.013
WOS:000244279500010
WOS000244279500010.pdf
3587123309745610
url http://dx.doi.org/10.1016/j.cam.2006.01.013
http://hdl.handle.net/11449/35282
identifier_str_mv Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007.
0377-0427
10.1016/j.cam.2006.01.013
WOS:000244279500010
WOS000244279500010.pdf
3587123309745610
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Computational and Applied Mathematics
1.632
0,938
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 576-590
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129337035063296