On the denominator values and barycentric weights of rational interpolants
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.cam.2006.01.013 http://hdl.handle.net/11449/35282 |
Resumo: | We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved. |
id |
UNSP_a36b4c4992d215e4152fd6b15d956f28 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/35282 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On the denominator values and barycentric weights of rational interpolantsinterpolationrational interpolantsdenominator valuesbarycentric weightsWe improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved.UEMS, Cassilandia, MS, BrazilUniv Estadual Paulista, DCCE IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUniv Estadual Paulista, DCCE IBILCE, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual de Mato Grosso do Sul (UEMS)Universidade Estadual Paulista (Unesp)Polezzi, M.Ranga, A. Sri2014-05-20T15:24:43Z2014-05-20T15:24:43Z2007-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article576-590application/pdfhttp://dx.doi.org/10.1016/j.cam.2006.01.013Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007.0377-0427http://hdl.handle.net/11449/3528210.1016/j.cam.2006.01.013WOS:000244279500010WOS000244279500010.pdf3587123309745610Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Computational and Applied Mathematics1.6320,938info:eu-repo/semantics/openAccess2023-12-29T06:16:50Zoai:repositorio.unesp.br:11449/35282Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:34:16.358361Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On the denominator values and barycentric weights of rational interpolants |
title |
On the denominator values and barycentric weights of rational interpolants |
spellingShingle |
On the denominator values and barycentric weights of rational interpolants Polezzi, M. interpolation rational interpolants denominator values barycentric weights |
title_short |
On the denominator values and barycentric weights of rational interpolants |
title_full |
On the denominator values and barycentric weights of rational interpolants |
title_fullStr |
On the denominator values and barycentric weights of rational interpolants |
title_full_unstemmed |
On the denominator values and barycentric weights of rational interpolants |
title_sort |
On the denominator values and barycentric weights of rational interpolants |
author |
Polezzi, M. |
author_facet |
Polezzi, M. Ranga, A. Sri |
author_role |
author |
author2 |
Ranga, A. Sri |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Mato Grosso do Sul (UEMS) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Polezzi, M. Ranga, A. Sri |
dc.subject.por.fl_str_mv |
interpolation rational interpolants denominator values barycentric weights |
topic |
interpolation rational interpolants denominator values barycentric weights |
description |
We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-03-15 2014-05-20T15:24:43Z 2014-05-20T15:24:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.cam.2006.01.013 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007. 0377-0427 http://hdl.handle.net/11449/35282 10.1016/j.cam.2006.01.013 WOS:000244279500010 WOS000244279500010.pdf 3587123309745610 |
url |
http://dx.doi.org/10.1016/j.cam.2006.01.013 http://hdl.handle.net/11449/35282 |
identifier_str_mv |
Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007. 0377-0427 10.1016/j.cam.2006.01.013 WOS:000244279500010 WOS000244279500010.pdf 3587123309745610 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Computational and Applied Mathematics 1.632 0,938 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
576-590 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129337035063296 |