Improved automatic impact crater detection on Mars based on morphological image processing and template matching

Detalhes bibliográficos
Autor(a) principal: Pedrosa, Miriam Maria [UNESP]
Data de Publicação: 2017
Outros Autores: Azevedo, Samara Calcado de [UNESP], Silva, Erivaldo Antonio da [UNESP], Dias, Mauricio Araujo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/19475705.2017.1327463
http://hdl.handle.net/11449/163675
Resumo: Impact craters help scientists to understand the geological history of planetary bodies. The aim of this paper is to improve the existing methodology for impact craters detection in images of planetary surfaces using a new approach based on morphological image processing (MIP). The improved methodology uses MIP followed by template matching based on fast Fourier transform (FFT). In this phase, a probability volume is generated based on the correlation between templates and images. The analysis of this probability volume allows the detection of different size of impact craters. We have applied the improved methodology to detect impact craters in a set of images from Thermal Emission Imaging System onboard the 2001 Mars Odyssey Space probe. The improved methodology has achieved a crater detection rate of 92.23% which can be considered robust, since results were obtained based on geomorphological features, different illumination conditions and low spatial resolution. The achieved results proved the viability of using MIP and template matching by FFT, to detect impact craters from planetary surfaces.
id UNSP_a39a182974c57bc78cd788618b401a69
oai_identifier_str oai:repositorio.unesp.br:11449/163675
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Improved automatic impact crater detection on Mars based on morphological image processing and template matchingAutomatic detectionimpact cratersMarsmorphological image processingtemplate matchingImpact craters help scientists to understand the geological history of planetary bodies. The aim of this paper is to improve the existing methodology for impact craters detection in images of planetary surfaces using a new approach based on morphological image processing (MIP). The improved methodology uses MIP followed by template matching based on fast Fourier transform (FFT). In this phase, a probability volume is generated based on the correlation between templates and images. The analysis of this probability volume allows the detection of different size of impact craters. We have applied the improved methodology to detect impact craters in a set of images from Thermal Emission Imaging System onboard the 2001 Mars Odyssey Space probe. The improved methodology has achieved a crater detection rate of 92.23% which can be considered robust, since results were obtained based on geomorphological features, different illumination conditions and low spatial resolution. The achieved results proved the viability of using MIP and template matching by FFT, to detect impact craters from planetary surfaces.PROPeCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Dept Cartog, Presidente Prudente, BrazilSao Paulo State Univ, Dept Math & Comp Sci, Presidente Prudente, BrazilSao Paulo State Univ, Dept Cartog, Presidente Prudente, BrazilSao Paulo State Univ, Dept Math & Comp Sci, Presidente Prudente, BrazilPROPe: 105/2015CAPES: 9022/13-9FAPESP: 2013/25257-4FAPESP: 2015/26743-5Taylor & Francis LtdUniversidade Estadual Paulista (Unesp)Pedrosa, Miriam Maria [UNESP]Azevedo, Samara Calcado de [UNESP]Silva, Erivaldo Antonio da [UNESP]Dias, Mauricio Araujo [UNESP]2018-11-26T17:44:32Z2018-11-26T17:44:32Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1306-1319application/pdfhttp://dx.doi.org/10.1080/19475705.2017.1327463Geomatics Natural Hazards & Risk. Abingdon: Taylor & Francis Ltd, v. 8, n. 2, p. 1306-1319, 2017.1947-5705http://hdl.handle.net/11449/16367510.1080/19475705.2017.1327463WOS:000418899200065WOS000418899200065.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGeomatics Natural Hazards & Risk0,426info:eu-repo/semantics/openAccess2024-06-19T14:32:06Zoai:repositorio.unesp.br:11449/163675Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:12.717902Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Improved automatic impact crater detection on Mars based on morphological image processing and template matching
title Improved automatic impact crater detection on Mars based on morphological image processing and template matching
spellingShingle Improved automatic impact crater detection on Mars based on morphological image processing and template matching
Pedrosa, Miriam Maria [UNESP]
Automatic detection
impact craters
Mars
morphological image processing
template matching
title_short Improved automatic impact crater detection on Mars based on morphological image processing and template matching
title_full Improved automatic impact crater detection on Mars based on morphological image processing and template matching
title_fullStr Improved automatic impact crater detection on Mars based on morphological image processing and template matching
title_full_unstemmed Improved automatic impact crater detection on Mars based on morphological image processing and template matching
title_sort Improved automatic impact crater detection on Mars based on morphological image processing and template matching
author Pedrosa, Miriam Maria [UNESP]
author_facet Pedrosa, Miriam Maria [UNESP]
Azevedo, Samara Calcado de [UNESP]
Silva, Erivaldo Antonio da [UNESP]
Dias, Mauricio Araujo [UNESP]
author_role author
author2 Azevedo, Samara Calcado de [UNESP]
Silva, Erivaldo Antonio da [UNESP]
Dias, Mauricio Araujo [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Pedrosa, Miriam Maria [UNESP]
Azevedo, Samara Calcado de [UNESP]
Silva, Erivaldo Antonio da [UNESP]
Dias, Mauricio Araujo [UNESP]
dc.subject.por.fl_str_mv Automatic detection
impact craters
Mars
morphological image processing
template matching
topic Automatic detection
impact craters
Mars
morphological image processing
template matching
description Impact craters help scientists to understand the geological history of planetary bodies. The aim of this paper is to improve the existing methodology for impact craters detection in images of planetary surfaces using a new approach based on morphological image processing (MIP). The improved methodology uses MIP followed by template matching based on fast Fourier transform (FFT). In this phase, a probability volume is generated based on the correlation between templates and images. The analysis of this probability volume allows the detection of different size of impact craters. We have applied the improved methodology to detect impact craters in a set of images from Thermal Emission Imaging System onboard the 2001 Mars Odyssey Space probe. The improved methodology has achieved a crater detection rate of 92.23% which can be considered robust, since results were obtained based on geomorphological features, different illumination conditions and low spatial resolution. The achieved results proved the viability of using MIP and template matching by FFT, to detect impact craters from planetary surfaces.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-26T17:44:32Z
2018-11-26T17:44:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/19475705.2017.1327463
Geomatics Natural Hazards & Risk. Abingdon: Taylor & Francis Ltd, v. 8, n. 2, p. 1306-1319, 2017.
1947-5705
http://hdl.handle.net/11449/163675
10.1080/19475705.2017.1327463
WOS:000418899200065
WOS000418899200065.pdf
url http://dx.doi.org/10.1080/19475705.2017.1327463
http://hdl.handle.net/11449/163675
identifier_str_mv Geomatics Natural Hazards & Risk. Abingdon: Taylor & Francis Ltd, v. 8, n. 2, p. 1306-1319, 2017.
1947-5705
10.1080/19475705.2017.1327463
WOS:000418899200065
WOS000418899200065.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Geomatics Natural Hazards & Risk
0,426
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1306-1319
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129448808022016