Improved automatic impact crater detection on Mars based on morphological image processing and template matching
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/19475705.2017.1327463 http://hdl.handle.net/11449/163675 |
Resumo: | Impact craters help scientists to understand the geological history of planetary bodies. The aim of this paper is to improve the existing methodology for impact craters detection in images of planetary surfaces using a new approach based on morphological image processing (MIP). The improved methodology uses MIP followed by template matching based on fast Fourier transform (FFT). In this phase, a probability volume is generated based on the correlation between templates and images. The analysis of this probability volume allows the detection of different size of impact craters. We have applied the improved methodology to detect impact craters in a set of images from Thermal Emission Imaging System onboard the 2001 Mars Odyssey Space probe. The improved methodology has achieved a crater detection rate of 92.23% which can be considered robust, since results were obtained based on geomorphological features, different illumination conditions and low spatial resolution. The achieved results proved the viability of using MIP and template matching by FFT, to detect impact craters from planetary surfaces. |
id |
UNSP_a39a182974c57bc78cd788618b401a69 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/163675 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Improved automatic impact crater detection on Mars based on morphological image processing and template matchingAutomatic detectionimpact cratersMarsmorphological image processingtemplate matchingImpact craters help scientists to understand the geological history of planetary bodies. The aim of this paper is to improve the existing methodology for impact craters detection in images of planetary surfaces using a new approach based on morphological image processing (MIP). The improved methodology uses MIP followed by template matching based on fast Fourier transform (FFT). In this phase, a probability volume is generated based on the correlation between templates and images. The analysis of this probability volume allows the detection of different size of impact craters. We have applied the improved methodology to detect impact craters in a set of images from Thermal Emission Imaging System onboard the 2001 Mars Odyssey Space probe. The improved methodology has achieved a crater detection rate of 92.23% which can be considered robust, since results were obtained based on geomorphological features, different illumination conditions and low spatial resolution. The achieved results proved the viability of using MIP and template matching by FFT, to detect impact craters from planetary surfaces.PROPeCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Dept Cartog, Presidente Prudente, BrazilSao Paulo State Univ, Dept Math & Comp Sci, Presidente Prudente, BrazilSao Paulo State Univ, Dept Cartog, Presidente Prudente, BrazilSao Paulo State Univ, Dept Math & Comp Sci, Presidente Prudente, BrazilPROPe: 105/2015CAPES: 9022/13-9FAPESP: 2013/25257-4FAPESP: 2015/26743-5Taylor & Francis LtdUniversidade Estadual Paulista (Unesp)Pedrosa, Miriam Maria [UNESP]Azevedo, Samara Calcado de [UNESP]Silva, Erivaldo Antonio da [UNESP]Dias, Mauricio Araujo [UNESP]2018-11-26T17:44:32Z2018-11-26T17:44:32Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1306-1319application/pdfhttp://dx.doi.org/10.1080/19475705.2017.1327463Geomatics Natural Hazards & Risk. Abingdon: Taylor & Francis Ltd, v. 8, n. 2, p. 1306-1319, 2017.1947-5705http://hdl.handle.net/11449/16367510.1080/19475705.2017.1327463WOS:000418899200065WOS000418899200065.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGeomatics Natural Hazards & Risk0,426info:eu-repo/semantics/openAccess2024-06-19T14:32:06Zoai:repositorio.unesp.br:11449/163675Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:40:12.717902Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching |
title |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching |
spellingShingle |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching Pedrosa, Miriam Maria [UNESP] Automatic detection impact craters Mars morphological image processing template matching |
title_short |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching |
title_full |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching |
title_fullStr |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching |
title_full_unstemmed |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching |
title_sort |
Improved automatic impact crater detection on Mars based on morphological image processing and template matching |
author |
Pedrosa, Miriam Maria [UNESP] |
author_facet |
Pedrosa, Miriam Maria [UNESP] Azevedo, Samara Calcado de [UNESP] Silva, Erivaldo Antonio da [UNESP] Dias, Mauricio Araujo [UNESP] |
author_role |
author |
author2 |
Azevedo, Samara Calcado de [UNESP] Silva, Erivaldo Antonio da [UNESP] Dias, Mauricio Araujo [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Pedrosa, Miriam Maria [UNESP] Azevedo, Samara Calcado de [UNESP] Silva, Erivaldo Antonio da [UNESP] Dias, Mauricio Araujo [UNESP] |
dc.subject.por.fl_str_mv |
Automatic detection impact craters Mars morphological image processing template matching |
topic |
Automatic detection impact craters Mars morphological image processing template matching |
description |
Impact craters help scientists to understand the geological history of planetary bodies. The aim of this paper is to improve the existing methodology for impact craters detection in images of planetary surfaces using a new approach based on morphological image processing (MIP). The improved methodology uses MIP followed by template matching based on fast Fourier transform (FFT). In this phase, a probability volume is generated based on the correlation between templates and images. The analysis of this probability volume allows the detection of different size of impact craters. We have applied the improved methodology to detect impact craters in a set of images from Thermal Emission Imaging System onboard the 2001 Mars Odyssey Space probe. The improved methodology has achieved a crater detection rate of 92.23% which can be considered robust, since results were obtained based on geomorphological features, different illumination conditions and low spatial resolution. The achieved results proved the viability of using MIP and template matching by FFT, to detect impact craters from planetary surfaces. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-11-26T17:44:32Z 2018-11-26T17:44:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/19475705.2017.1327463 Geomatics Natural Hazards & Risk. Abingdon: Taylor & Francis Ltd, v. 8, n. 2, p. 1306-1319, 2017. 1947-5705 http://hdl.handle.net/11449/163675 10.1080/19475705.2017.1327463 WOS:000418899200065 WOS000418899200065.pdf |
url |
http://dx.doi.org/10.1080/19475705.2017.1327463 http://hdl.handle.net/11449/163675 |
identifier_str_mv |
Geomatics Natural Hazards & Risk. Abingdon: Taylor & Francis Ltd, v. 8, n. 2, p. 1306-1319, 2017. 1947-5705 10.1080/19475705.2017.1327463 WOS:000418899200065 WOS000418899200065.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Geomatics Natural Hazards & Risk 0,426 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1306-1319 application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129448808022016 |