Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization

Detalhes bibliográficos
Autor(a) principal: Garcia, Melina P.B. [UNESP]
Data de Publicação: 2023
Outros Autores: Martin, Cibely S. [UNESP], Kavazoi, Henry S. [UNESP], Maximino, Mateus D. [UNESP], Alessio, Priscila [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.tsf.2023.139895
http://hdl.handle.net/11449/248888
Resumo: The deposition technique, structure, and thermal treatment can influence the optical and electrical properties of perylene derivatives films. In this work, the nanostructured Langmuir-Schaefer films of bis(n-propylimide) perylene (PTCD-Pr) with thermal treatment were optimized for an electrochemical application. The PTCD-Pr film before and after thermal treatment was characterized by ultraviolet-visible absorption, infrared absorption spectroscopy, micro-Raman scattering, and voltammetry. Brewster angle microscopy images confirmed the higher aggregation degree of molecules on Langmuir film. The PTCD-Pr deposition showed a linear growth, forming H, J, and null aggregates. The infrared absorption spectroscopy indicates a preferential head-on orientation with a slight chromophore deviation. After thermal treatment (200 °C for 2 h), the PTCD-Pr film showed a decrease in the contribution of null aggregates while maintaining the same molecular orientation. The Raman and surface-enhanced Raman spectroscopy measurements also confirmed the presence of PTCD-Pr molecules distributed throughout the substrate surface, and the thermal treatment conditions did not degrade the PTCD-Pr molecule. Moreover, thermal treatment contributes to the increase of stability of the film at the electrode surface for electrochemical measurements. In the presence of active species (paraquat in this case), the thermally treated film showed promising electrocatalytic properties compared to the unmodified electrode.
id UNSP_a71989a34840c29bac022b4b876a21e0
oai_identifier_str oai:repositorio.unesp.br:11449/248888
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterizationFilm characterizationNanostructured thin filmsParaquatPeryleneThe deposition technique, structure, and thermal treatment can influence the optical and electrical properties of perylene derivatives films. In this work, the nanostructured Langmuir-Schaefer films of bis(n-propylimide) perylene (PTCD-Pr) with thermal treatment were optimized for an electrochemical application. The PTCD-Pr film before and after thermal treatment was characterized by ultraviolet-visible absorption, infrared absorption spectroscopy, micro-Raman scattering, and voltammetry. Brewster angle microscopy images confirmed the higher aggregation degree of molecules on Langmuir film. The PTCD-Pr deposition showed a linear growth, forming H, J, and null aggregates. The infrared absorption spectroscopy indicates a preferential head-on orientation with a slight chromophore deviation. After thermal treatment (200 °C for 2 h), the PTCD-Pr film showed a decrease in the contribution of null aggregates while maintaining the same molecular orientation. The Raman and surface-enhanced Raman spectroscopy measurements also confirmed the presence of PTCD-Pr molecules distributed throughout the substrate surface, and the thermal treatment conditions did not degrade the PTCD-Pr molecule. Moreover, thermal treatment contributes to the increase of stability of the film at the electrode surface for electrochemical measurements. In the presence of active species (paraquat in this case), the thermally treated film showed promising electrocatalytic properties compared to the unmodified electrode.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)São Paulo State University (UNESP) School of Technology and Sciences, Presidente PrudenteSão Paulo Technology College (FATEC), Presidente PrudenteSão Paulo State University (UNESP) School of Technology and Sciences, Presidente PrudenteFAPESP: 2014/50869–6FAPESP: 2017/15019–0FAPESP: 2018/22214–6FAPESP: 2021/14235–6CAPES: 23038.000776/201754CNPq: 316535/2021–4CNPq: 422163/2018–0CNPq: 465572/2014–6Universidade Estadual Paulista (UNESP)São Paulo Technology College (FATEC)Garcia, Melina P.B. [UNESP]Martin, Cibely S. [UNESP]Kavazoi, Henry S. [UNESP]Maximino, Mateus D. [UNESP]Alessio, Priscila [UNESP]2023-07-29T13:56:25Z2023-07-29T13:56:25Z2023-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.tsf.2023.139895Thin Solid Films, v. 777.0040-6090http://hdl.handle.net/11449/24888810.1016/j.tsf.2023.1398952-s2.0-85160321658Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengThin Solid Filmsinfo:eu-repo/semantics/openAccess2024-06-18T18:17:52Zoai:repositorio.unesp.br:11449/248888Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:11:43.792540Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
title Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
spellingShingle Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
Garcia, Melina P.B. [UNESP]
Film characterization
Nanostructured thin films
Paraquat
Perylene
title_short Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
title_full Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
title_fullStr Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
title_full_unstemmed Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
title_sort Perylene nanostructured films optimization for organic electronics: Molecular, structural, and electrochemical characterization
author Garcia, Melina P.B. [UNESP]
author_facet Garcia, Melina P.B. [UNESP]
Martin, Cibely S. [UNESP]
Kavazoi, Henry S. [UNESP]
Maximino, Mateus D. [UNESP]
Alessio, Priscila [UNESP]
author_role author
author2 Martin, Cibely S. [UNESP]
Kavazoi, Henry S. [UNESP]
Maximino, Mateus D. [UNESP]
Alessio, Priscila [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
São Paulo Technology College (FATEC)
dc.contributor.author.fl_str_mv Garcia, Melina P.B. [UNESP]
Martin, Cibely S. [UNESP]
Kavazoi, Henry S. [UNESP]
Maximino, Mateus D. [UNESP]
Alessio, Priscila [UNESP]
dc.subject.por.fl_str_mv Film characterization
Nanostructured thin films
Paraquat
Perylene
topic Film characterization
Nanostructured thin films
Paraquat
Perylene
description The deposition technique, structure, and thermal treatment can influence the optical and electrical properties of perylene derivatives films. In this work, the nanostructured Langmuir-Schaefer films of bis(n-propylimide) perylene (PTCD-Pr) with thermal treatment were optimized for an electrochemical application. The PTCD-Pr film before and after thermal treatment was characterized by ultraviolet-visible absorption, infrared absorption spectroscopy, micro-Raman scattering, and voltammetry. Brewster angle microscopy images confirmed the higher aggregation degree of molecules on Langmuir film. The PTCD-Pr deposition showed a linear growth, forming H, J, and null aggregates. The infrared absorption spectroscopy indicates a preferential head-on orientation with a slight chromophore deviation. After thermal treatment (200 °C for 2 h), the PTCD-Pr film showed a decrease in the contribution of null aggregates while maintaining the same molecular orientation. The Raman and surface-enhanced Raman spectroscopy measurements also confirmed the presence of PTCD-Pr molecules distributed throughout the substrate surface, and the thermal treatment conditions did not degrade the PTCD-Pr molecule. Moreover, thermal treatment contributes to the increase of stability of the film at the electrode surface for electrochemical measurements. In the presence of active species (paraquat in this case), the thermally treated film showed promising electrocatalytic properties compared to the unmodified electrode.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:56:25Z
2023-07-29T13:56:25Z
2023-07-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.tsf.2023.139895
Thin Solid Films, v. 777.
0040-6090
http://hdl.handle.net/11449/248888
10.1016/j.tsf.2023.139895
2-s2.0-85160321658
url http://dx.doi.org/10.1016/j.tsf.2023.139895
http://hdl.handle.net/11449/248888
identifier_str_mv Thin Solid Films, v. 777.
0040-6090
10.1016/j.tsf.2023.139895
2-s2.0-85160321658
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Thin Solid Films
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128477965058048