An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem

Detalhes bibliográficos
Autor(a) principal: Basquerotto, Cláudio H. C. C.
Data de Publicação: 2022
Outros Autores: Ruiz, A., da Silva, Samuel [UNESP], Weber, Hans Ingo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00707-022-03150-5
http://hdl.handle.net/11449/223504
Resumo: This work illustrates how one could apply Lie point symmetries for finding the analytical solution to first-order mechanical systems. Although the classical Lie method constitutes a powerful tool for solving differential equations, an obstacle appears in the case of systems of first-order equations because they admit an infinite number of symmetries, and it is not possible to compute them by following a systematic procedure. To overcome this difficulty, we follow the idea exposed in Nucci (J. Math. Phys. 37: 1772–1775, 1996), Nucci (Electr. J. Diff. Eqn. 12: 87–101, 2005), Nucci (J. Math. Phys. 42: 746, 2001) consisting of transforming the original system to an equivalent system in which one of the equations is of second–order. The presented approach is applied to Hathaway’s circular pursuit problem, leading to the analytical solution of the system expressed in terms of the general solution to an Abel equation.
id UNSP_a83733aa5b4306e524d907a59e826ea7
oai_identifier_str oai:repositorio.unesp.br:11449/223504
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problemThis work illustrates how one could apply Lie point symmetries for finding the analytical solution to first-order mechanical systems. Although the classical Lie method constitutes a powerful tool for solving differential equations, an obstacle appears in the case of systems of first-order equations because they admit an infinite number of symmetries, and it is not possible to compute them by following a systematic procedure. To overcome this difficulty, we follow the idea exposed in Nucci (J. Math. Phys. 37: 1772–1775, 1996), Nucci (Electr. J. Diff. Eqn. 12: 87–101, 2005), Nucci (J. Math. Phys. 42: 746, 2001) consisting of transforming the original system to an equivalent system in which one of the equations is of second–order. The presented approach is applied to Hathaway’s circular pursuit problem, leading to the analytical solution of the system expressed in terms of the general solution to an Abel equation.Faculdade de Engenharia Mecânica Instituto de Geociências e Engenharias Universidade Federal do Sul e Sudeste do ParáDepartamento de Matemáticas Universidad de Cádiz - UCADepartamento de Engenharia Mecânica Universidade Estadual Paulista - UNESPDepartamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro - PUC-RIODepartamento de Engenharia Mecânica Universidade Estadual Paulista - UNESPUniversidade Federal do Sul e Sudeste do ParáUniversidad de Cádiz - UCAUniversidade Estadual Paulista (UNESP)Pontifícia Universidade Católica do Rio de Janeiro - PUC-RIOBasquerotto, Cláudio H. C. C.Ruiz, A.da Silva, Samuel [UNESP]Weber, Hans Ingo2022-04-28T19:51:10Z2022-04-28T19:51:10Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s00707-022-03150-5Acta Mechanica.1619-69370001-5970http://hdl.handle.net/11449/22350410.1007/s00707-022-03150-52-s2.0-85125105144Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengActa Mechanicainfo:eu-repo/semantics/openAccess2022-04-28T19:51:10Zoai:repositorio.unesp.br:11449/223504Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:33:42.905660Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
title An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
spellingShingle An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
Basquerotto, Cláudio H. C. C.
title_short An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
title_full An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
title_fullStr An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
title_full_unstemmed An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
title_sort An illustrative application of the Lie symmetries in the context of first-order mechanical systems: Hathaway’s circular pursuit problem
author Basquerotto, Cláudio H. C. C.
author_facet Basquerotto, Cláudio H. C. C.
Ruiz, A.
da Silva, Samuel [UNESP]
Weber, Hans Ingo
author_role author
author2 Ruiz, A.
da Silva, Samuel [UNESP]
Weber, Hans Ingo
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do Sul e Sudeste do Pará
Universidad de Cádiz - UCA
Universidade Estadual Paulista (UNESP)
Pontifícia Universidade Católica do Rio de Janeiro - PUC-RIO
dc.contributor.author.fl_str_mv Basquerotto, Cláudio H. C. C.
Ruiz, A.
da Silva, Samuel [UNESP]
Weber, Hans Ingo
description This work illustrates how one could apply Lie point symmetries for finding the analytical solution to first-order mechanical systems. Although the classical Lie method constitutes a powerful tool for solving differential equations, an obstacle appears in the case of systems of first-order equations because they admit an infinite number of symmetries, and it is not possible to compute them by following a systematic procedure. To overcome this difficulty, we follow the idea exposed in Nucci (J. Math. Phys. 37: 1772–1775, 1996), Nucci (Electr. J. Diff. Eqn. 12: 87–101, 2005), Nucci (J. Math. Phys. 42: 746, 2001) consisting of transforming the original system to an equivalent system in which one of the equations is of second–order. The presented approach is applied to Hathaway’s circular pursuit problem, leading to the analytical solution of the system expressed in terms of the general solution to an Abel equation.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:51:10Z
2022-04-28T19:51:10Z
2022-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00707-022-03150-5
Acta Mechanica.
1619-6937
0001-5970
http://hdl.handle.net/11449/223504
10.1007/s00707-022-03150-5
2-s2.0-85125105144
url http://dx.doi.org/10.1007/s00707-022-03150-5
http://hdl.handle.net/11449/223504
identifier_str_mv Acta Mechanica.
1619-6937
0001-5970
10.1007/s00707-022-03150-5
2-s2.0-85125105144
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Acta Mechanica
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129335660380160