Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them

Detalhes bibliográficos
Autor(a) principal: Melnikov, Dmitry
Data de Publicação: 2021
Outros Autores: Nastase, Horatiu [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/JHEP05(2021)092
http://hdl.handle.net/11449/207729
Resumo: In this paper we study the Wiedemann-Franz laws for transport in 2+1 dimensions, and the action of Sl(2, ℤ) on this transport, for theories with an AdS/CMT dual. We find that Sl(2, ℤ) restricts the RG-like flow of conductivities and that the Wiedemann-Franz law is L¯=κ¯/(Tσ)=cg42π/3, from the weakly coupled gravity dual. In a self-dual theory this value is also the value of L = κ/(Tσ) in the weakly coupled field theory description. Using the formalism of a 0+1 dimensional effective action for both generalized SY Kq models and the AdS4 gravity dual, we calculate the transport coefficients and show how they can be matched at large q. We construct a generalization of this effective action that is invariant under Sl(2, ℤ) and can describe vortex conduction and integer quantum Hall effect.
id UNSP_a8496394ecee25a466aa1cc3038553a2
oai_identifier_str oai:repositorio.unesp.br:11449/207729
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for themAdS-CFT CorrespondenceDuality in Gauge Field TheoriesHolography and condensed matter physics (AdS/CMT)In this paper we study the Wiedemann-Franz laws for transport in 2+1 dimensions, and the action of Sl(2, ℤ) on this transport, for theories with an AdS/CMT dual. We find that Sl(2, ℤ) restricts the RG-like flow of conductivities and that the Wiedemann-Franz law is L¯=κ¯/(Tσ)=cg42π/3, from the weakly coupled gravity dual. In a self-dual theory this value is also the value of L = κ/(Tσ) in the weakly coupled field theory description. Using the formalism of a 0+1 dimensional effective action for both generalized SY Kq models and the AdS4 gravity dual, we calculate the transport coefficients and show how they can be matched at large q. We construct a generalization of this effective action that is invariant under Sl(2, ℤ) and can describe vortex conduction and integer quantum Hall effect.International Institute of Physics Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa NovaInstitute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25Instituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIInstituto de Física Teórica UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. IIUniversidade Federal do Rio Grande do NorteInstitute for Theoretical and Experimental PhysicsUniversidade Estadual Paulista (Unesp)Melnikov, DmitryNastase, Horatiu [UNESP]2021-06-25T11:00:01Z2021-06-25T11:00:01Z2021-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/JHEP05(2021)092Journal of High Energy Physics, v. 2021, n. 5, 2021.1029-8479http://hdl.handle.net/11449/20772910.1007/JHEP05(2021)0922-s2.0-85105759792Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of High Energy Physicsinfo:eu-repo/semantics/openAccess2021-10-23T17:45:57Zoai:repositorio.unesp.br:11449/207729Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:34:19.847846Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
title Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
spellingShingle Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
Melnikov, Dmitry
AdS-CFT Correspondence
Duality in Gauge Field Theories
Holography and condensed matter physics (AdS/CMT)
title_short Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
title_full Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
title_fullStr Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
title_full_unstemmed Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
title_sort Wiedemann-Franz laws and Sl(2, ℤ) duality in AdS/CMT holographic duals and one-dimensional effective actions for them
author Melnikov, Dmitry
author_facet Melnikov, Dmitry
Nastase, Horatiu [UNESP]
author_role author
author2 Nastase, Horatiu [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Institute for Theoretical and Experimental Physics
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Melnikov, Dmitry
Nastase, Horatiu [UNESP]
dc.subject.por.fl_str_mv AdS-CFT Correspondence
Duality in Gauge Field Theories
Holography and condensed matter physics (AdS/CMT)
topic AdS-CFT Correspondence
Duality in Gauge Field Theories
Holography and condensed matter physics (AdS/CMT)
description In this paper we study the Wiedemann-Franz laws for transport in 2+1 dimensions, and the action of Sl(2, ℤ) on this transport, for theories with an AdS/CMT dual. We find that Sl(2, ℤ) restricts the RG-like flow of conductivities and that the Wiedemann-Franz law is L¯=κ¯/(Tσ)=cg42π/3, from the weakly coupled gravity dual. In a self-dual theory this value is also the value of L = κ/(Tσ) in the weakly coupled field theory description. Using the formalism of a 0+1 dimensional effective action for both generalized SY Kq models and the AdS4 gravity dual, we calculate the transport coefficients and show how they can be matched at large q. We construct a generalization of this effective action that is invariant under Sl(2, ℤ) and can describe vortex conduction and integer quantum Hall effect.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T11:00:01Z
2021-06-25T11:00:01Z
2021-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/JHEP05(2021)092
Journal of High Energy Physics, v. 2021, n. 5, 2021.
1029-8479
http://hdl.handle.net/11449/207729
10.1007/JHEP05(2021)092
2-s2.0-85105759792
url http://dx.doi.org/10.1007/JHEP05(2021)092
http://hdl.handle.net/11449/207729
identifier_str_mv Journal of High Energy Physics, v. 2021, n. 5, 2021.
1029-8479
10.1007/JHEP05(2021)092
2-s2.0-85105759792
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of High Energy Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129337600245760