Damage Quantification in Composite Structures Using Autoregressive Models

Detalhes bibliográficos
Autor(a) principal: Paixão, Jessé A. S. [UNESP]
Data de Publicação: 2020
Outros Autores: da Silva, Samuel [UNESP], Figueiredo, Eloi
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-981-13-8331-1_63
http://hdl.handle.net/11449/197926
Resumo: When small damage is detected in its initial stage in a real structure, it is necessary to decide if the user must repair immediately or keep on safely monitoring it. Regarding the second choice, the present paper proposes a methodology for damage severity quantification of delamination extension in composite structures based on a data-driven strategy using autoregressive modeling approach for Lamb wave propagation. A pair of features is used based on the autoregressive (AR) model coefficients and residuals and a machine learning algorithm with Mahalanobis Squared Distance for outlier detection. The damage severity quantification is proposed through an experimentally identified smoothing spline trend curve between the damage index and its severity. The application of the methodology is demonstrated in a composite plate with various progressive damage scenarios. The proposed method proved to be able to identify and predict the localization and the damage index related to its respective extension of minimal simulated damage with promising accuracy.
id UNSP_a89c8f1687dd25a8c0dd7e3e681975e4
oai_identifier_str oai:repositorio.unesp.br:11449/197926
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Damage Quantification in Composite Structures Using Autoregressive ModelsAutoregressive modelsComposite structuresDamage quantificationWhen small damage is detected in its initial stage in a real structure, it is necessary to decide if the user must repair immediately or keep on safely monitoring it. Regarding the second choice, the present paper proposes a methodology for damage severity quantification of delamination extension in composite structures based on a data-driven strategy using autoregressive modeling approach for Lamb wave propagation. A pair of features is used based on the autoregressive (AR) model coefficients and residuals and a machine learning algorithm with Mahalanobis Squared Distance for outlier detection. The damage severity quantification is proposed through an experimentally identified smoothing spline trend curve between the damage index and its severity. The application of the methodology is demonstrated in a composite plate with various progressive damage scenarios. The proposed method proved to be able to identify and predict the localization and the damage index related to its respective extension of minimal simulated damage with promising accuracy.Faculdade de Engenharia Departamento de Engenharia Mecânica Universidade Estadual Paulista - UNESP, Av. Brasil 56Faculdade de Engenharia Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376CONSTRUCT Institute of R&D in Structures and Construction, R. Dr. Roberto Frias s/nFaculdade de Engenharia Departamento de Engenharia Mecânica Universidade Estadual Paulista - UNESP, Av. Brasil 56Universidade Estadual Paulista (Unesp)Universidade Lusófona de Humanidades e TecnologiasInstitute of R&D in Structures and ConstructionPaixão, Jessé A. S. [UNESP]da Silva, Samuel [UNESP]Figueiredo, Eloi2020-12-12T00:54:17Z2020-12-12T00:54:17Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject804-815http://dx.doi.org/10.1007/978-981-13-8331-1_63Lecture Notes in Mechanical Engineering, p. 804-815.2195-43642195-4356http://hdl.handle.net/11449/19792610.1007/978-981-13-8331-1_632-s2.0-85069208472Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Mechanical Engineeringinfo:eu-repo/semantics/openAccess2021-10-23T07:07:39Zoai:repositorio.unesp.br:11449/197926Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:36:05.075675Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Damage Quantification in Composite Structures Using Autoregressive Models
title Damage Quantification in Composite Structures Using Autoregressive Models
spellingShingle Damage Quantification in Composite Structures Using Autoregressive Models
Paixão, Jessé A. S. [UNESP]
Autoregressive models
Composite structures
Damage quantification
title_short Damage Quantification in Composite Structures Using Autoregressive Models
title_full Damage Quantification in Composite Structures Using Autoregressive Models
title_fullStr Damage Quantification in Composite Structures Using Autoregressive Models
title_full_unstemmed Damage Quantification in Composite Structures Using Autoregressive Models
title_sort Damage Quantification in Composite Structures Using Autoregressive Models
author Paixão, Jessé A. S. [UNESP]
author_facet Paixão, Jessé A. S. [UNESP]
da Silva, Samuel [UNESP]
Figueiredo, Eloi
author_role author
author2 da Silva, Samuel [UNESP]
Figueiredo, Eloi
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Lusófona de Humanidades e Tecnologias
Institute of R&D in Structures and Construction
dc.contributor.author.fl_str_mv Paixão, Jessé A. S. [UNESP]
da Silva, Samuel [UNESP]
Figueiredo, Eloi
dc.subject.por.fl_str_mv Autoregressive models
Composite structures
Damage quantification
topic Autoregressive models
Composite structures
Damage quantification
description When small damage is detected in its initial stage in a real structure, it is necessary to decide if the user must repair immediately or keep on safely monitoring it. Regarding the second choice, the present paper proposes a methodology for damage severity quantification of delamination extension in composite structures based on a data-driven strategy using autoregressive modeling approach for Lamb wave propagation. A pair of features is used based on the autoregressive (AR) model coefficients and residuals and a machine learning algorithm with Mahalanobis Squared Distance for outlier detection. The damage severity quantification is proposed through an experimentally identified smoothing spline trend curve between the damage index and its severity. The application of the methodology is demonstrated in a composite plate with various progressive damage scenarios. The proposed method proved to be able to identify and predict the localization and the damage index related to its respective extension of minimal simulated damage with promising accuracy.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T00:54:17Z
2020-12-12T00:54:17Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-981-13-8331-1_63
Lecture Notes in Mechanical Engineering, p. 804-815.
2195-4364
2195-4356
http://hdl.handle.net/11449/197926
10.1007/978-981-13-8331-1_63
2-s2.0-85069208472
url http://dx.doi.org/10.1007/978-981-13-8331-1_63
http://hdl.handle.net/11449/197926
identifier_str_mv Lecture Notes in Mechanical Engineering, p. 804-815.
2195-4364
2195-4356
10.1007/978-981-13-8331-1_63
2-s2.0-85069208472
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Mechanical Engineering
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 804-815
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129535355387904