Damage Quantification in Composite Structures Using Autoregressive Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-981-13-8331-1_63 http://hdl.handle.net/11449/197926 |
Resumo: | When small damage is detected in its initial stage in a real structure, it is necessary to decide if the user must repair immediately or keep on safely monitoring it. Regarding the second choice, the present paper proposes a methodology for damage severity quantification of delamination extension in composite structures based on a data-driven strategy using autoregressive modeling approach for Lamb wave propagation. A pair of features is used based on the autoregressive (AR) model coefficients and residuals and a machine learning algorithm with Mahalanobis Squared Distance for outlier detection. The damage severity quantification is proposed through an experimentally identified smoothing spline trend curve between the damage index and its severity. The application of the methodology is demonstrated in a composite plate with various progressive damage scenarios. The proposed method proved to be able to identify and predict the localization and the damage index related to its respective extension of minimal simulated damage with promising accuracy. |
id |
UNSP_a89c8f1687dd25a8c0dd7e3e681975e4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/197926 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Damage Quantification in Composite Structures Using Autoregressive ModelsAutoregressive modelsComposite structuresDamage quantificationWhen small damage is detected in its initial stage in a real structure, it is necessary to decide if the user must repair immediately or keep on safely monitoring it. Regarding the second choice, the present paper proposes a methodology for damage severity quantification of delamination extension in composite structures based on a data-driven strategy using autoregressive modeling approach for Lamb wave propagation. A pair of features is used based on the autoregressive (AR) model coefficients and residuals and a machine learning algorithm with Mahalanobis Squared Distance for outlier detection. The damage severity quantification is proposed through an experimentally identified smoothing spline trend curve between the damage index and its severity. The application of the methodology is demonstrated in a composite plate with various progressive damage scenarios. The proposed method proved to be able to identify and predict the localization and the damage index related to its respective extension of minimal simulated damage with promising accuracy.Faculdade de Engenharia Departamento de Engenharia Mecânica Universidade Estadual Paulista - UNESP, Av. Brasil 56Faculdade de Engenharia Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376CONSTRUCT Institute of R&D in Structures and Construction, R. Dr. Roberto Frias s/nFaculdade de Engenharia Departamento de Engenharia Mecânica Universidade Estadual Paulista - UNESP, Av. Brasil 56Universidade Estadual Paulista (Unesp)Universidade Lusófona de Humanidades e TecnologiasInstitute of R&D in Structures and ConstructionPaixão, Jessé A. S. [UNESP]da Silva, Samuel [UNESP]Figueiredo, Eloi2020-12-12T00:54:17Z2020-12-12T00:54:17Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject804-815http://dx.doi.org/10.1007/978-981-13-8331-1_63Lecture Notes in Mechanical Engineering, p. 804-815.2195-43642195-4356http://hdl.handle.net/11449/19792610.1007/978-981-13-8331-1_632-s2.0-85069208472Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Mechanical Engineeringinfo:eu-repo/semantics/openAccess2021-10-23T07:07:39Zoai:repositorio.unesp.br:11449/197926Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:36:05.075675Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Damage Quantification in Composite Structures Using Autoregressive Models |
title |
Damage Quantification in Composite Structures Using Autoregressive Models |
spellingShingle |
Damage Quantification in Composite Structures Using Autoregressive Models Paixão, Jessé A. S. [UNESP] Autoregressive models Composite structures Damage quantification |
title_short |
Damage Quantification in Composite Structures Using Autoregressive Models |
title_full |
Damage Quantification in Composite Structures Using Autoregressive Models |
title_fullStr |
Damage Quantification in Composite Structures Using Autoregressive Models |
title_full_unstemmed |
Damage Quantification in Composite Structures Using Autoregressive Models |
title_sort |
Damage Quantification in Composite Structures Using Autoregressive Models |
author |
Paixão, Jessé A. S. [UNESP] |
author_facet |
Paixão, Jessé A. S. [UNESP] da Silva, Samuel [UNESP] Figueiredo, Eloi |
author_role |
author |
author2 |
da Silva, Samuel [UNESP] Figueiredo, Eloi |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Lusófona de Humanidades e Tecnologias Institute of R&D in Structures and Construction |
dc.contributor.author.fl_str_mv |
Paixão, Jessé A. S. [UNESP] da Silva, Samuel [UNESP] Figueiredo, Eloi |
dc.subject.por.fl_str_mv |
Autoregressive models Composite structures Damage quantification |
topic |
Autoregressive models Composite structures Damage quantification |
description |
When small damage is detected in its initial stage in a real structure, it is necessary to decide if the user must repair immediately or keep on safely monitoring it. Regarding the second choice, the present paper proposes a methodology for damage severity quantification of delamination extension in composite structures based on a data-driven strategy using autoregressive modeling approach for Lamb wave propagation. A pair of features is used based on the autoregressive (AR) model coefficients and residuals and a machine learning algorithm with Mahalanobis Squared Distance for outlier detection. The damage severity quantification is proposed through an experimentally identified smoothing spline trend curve between the damage index and its severity. The application of the methodology is demonstrated in a composite plate with various progressive damage scenarios. The proposed method proved to be able to identify and predict the localization and the damage index related to its respective extension of minimal simulated damage with promising accuracy. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T00:54:17Z 2020-12-12T00:54:17Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-981-13-8331-1_63 Lecture Notes in Mechanical Engineering, p. 804-815. 2195-4364 2195-4356 http://hdl.handle.net/11449/197926 10.1007/978-981-13-8331-1_63 2-s2.0-85069208472 |
url |
http://dx.doi.org/10.1007/978-981-13-8331-1_63 http://hdl.handle.net/11449/197926 |
identifier_str_mv |
Lecture Notes in Mechanical Engineering, p. 804-815. 2195-4364 2195-4356 10.1007/978-981-13-8331-1_63 2-s2.0-85069208472 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Mechanical Engineering |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
804-815 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129535355387904 |