Sufficient Optimality Conditions for Optimal Control Problems with State Constraints

Detalhes bibliográficos
Autor(a) principal: Antunes de Oliveira, Valeriano [UNESP]
Data de Publicação: 2019
Outros Autores: Nunes Silva, Geraldo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/01630563.2018.1562469
http://hdl.handle.net/11449/188723
Resumo: It is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions.
id UNSP_a8fdb682e402637cc38dcd8cc44ccf41
oai_identifier_str oai:repositorio.unesp.br:11449/188723
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Sufficient Optimality Conditions for Optimal Control Problems with State ConstraintsGeneralized convexityoptimal controlstate constraintssufficient optimality conditionsIt is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions.Applied Mathematics Department Biosciences Languages and Exact Sciences Institute UNESP - São Paulo State University São José do Rio PretoApplied Mathematics Department Biosciences Languages and Exact Sciences Institute UNESP - São Paulo State University São José do Rio PretoUniversidade Estadual Paulista (Unesp)Antunes de Oliveira, Valeriano [UNESP]Nunes Silva, Geraldo [UNESP]2019-10-06T16:17:14Z2019-10-06T16:17:14Z2019-06-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article867-887http://dx.doi.org/10.1080/01630563.2018.1562469Numerical Functional Analysis and Optimization, v. 40, n. 8, p. 867-887, 2019.1532-24670163-0563http://hdl.handle.net/11449/18872310.1080/01630563.2018.15624692-s2.0-85061443593Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNumerical Functional Analysis and Optimizationinfo:eu-repo/semantics/openAccess2021-10-23T05:55:29Zoai:repositorio.unesp.br:11449/188723Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:11:16.126079Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
title Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
spellingShingle Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
Antunes de Oliveira, Valeriano [UNESP]
Generalized convexity
optimal control
state constraints
sufficient optimality conditions
title_short Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
title_full Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
title_fullStr Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
title_full_unstemmed Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
title_sort Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
author Antunes de Oliveira, Valeriano [UNESP]
author_facet Antunes de Oliveira, Valeriano [UNESP]
Nunes Silva, Geraldo [UNESP]
author_role author
author2 Nunes Silva, Geraldo [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Antunes de Oliveira, Valeriano [UNESP]
Nunes Silva, Geraldo [UNESP]
dc.subject.por.fl_str_mv Generalized convexity
optimal control
state constraints
sufficient optimality conditions
topic Generalized convexity
optimal control
state constraints
sufficient optimality conditions
description It is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-06T16:17:14Z
2019-10-06T16:17:14Z
2019-06-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/01630563.2018.1562469
Numerical Functional Analysis and Optimization, v. 40, n. 8, p. 867-887, 2019.
1532-2467
0163-0563
http://hdl.handle.net/11449/188723
10.1080/01630563.2018.1562469
2-s2.0-85061443593
url http://dx.doi.org/10.1080/01630563.2018.1562469
http://hdl.handle.net/11449/188723
identifier_str_mv Numerical Functional Analysis and Optimization, v. 40, n. 8, p. 867-887, 2019.
1532-2467
0163-0563
10.1080/01630563.2018.1562469
2-s2.0-85061443593
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Numerical Functional Analysis and Optimization
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 867-887
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128616034205696