Sufficient Optimality Conditions for Optimal Control Problems with State Constraints
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/01630563.2018.1562469 http://hdl.handle.net/11449/188723 |
Resumo: | It is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions. |
id |
UNSP_a8fdb682e402637cc38dcd8cc44ccf41 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/188723 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Sufficient Optimality Conditions for Optimal Control Problems with State ConstraintsGeneralized convexityoptimal controlstate constraintssufficient optimality conditionsIt is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions.Applied Mathematics Department Biosciences Languages and Exact Sciences Institute UNESP - São Paulo State University São José do Rio PretoApplied Mathematics Department Biosciences Languages and Exact Sciences Institute UNESP - São Paulo State University São José do Rio PretoUniversidade Estadual Paulista (Unesp)Antunes de Oliveira, Valeriano [UNESP]Nunes Silva, Geraldo [UNESP]2019-10-06T16:17:14Z2019-10-06T16:17:14Z2019-06-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article867-887http://dx.doi.org/10.1080/01630563.2018.1562469Numerical Functional Analysis and Optimization, v. 40, n. 8, p. 867-887, 2019.1532-24670163-0563http://hdl.handle.net/11449/18872310.1080/01630563.2018.15624692-s2.0-85061443593Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNumerical Functional Analysis and Optimizationinfo:eu-repo/semantics/openAccess2021-10-23T05:55:29Zoai:repositorio.unesp.br:11449/188723Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:11:16.126079Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints |
title |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints |
spellingShingle |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints Antunes de Oliveira, Valeriano [UNESP] Generalized convexity optimal control state constraints sufficient optimality conditions |
title_short |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints |
title_full |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints |
title_fullStr |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints |
title_full_unstemmed |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints |
title_sort |
Sufficient Optimality Conditions for Optimal Control Problems with State Constraints |
author |
Antunes de Oliveira, Valeriano [UNESP] |
author_facet |
Antunes de Oliveira, Valeriano [UNESP] Nunes Silva, Geraldo [UNESP] |
author_role |
author |
author2 |
Nunes Silva, Geraldo [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Antunes de Oliveira, Valeriano [UNESP] Nunes Silva, Geraldo [UNESP] |
dc.subject.por.fl_str_mv |
Generalized convexity optimal control state constraints sufficient optimality conditions |
topic |
Generalized convexity optimal control state constraints sufficient optimality conditions |
description |
It is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T16:17:14Z 2019-10-06T16:17:14Z 2019-06-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/01630563.2018.1562469 Numerical Functional Analysis and Optimization, v. 40, n. 8, p. 867-887, 2019. 1532-2467 0163-0563 http://hdl.handle.net/11449/188723 10.1080/01630563.2018.1562469 2-s2.0-85061443593 |
url |
http://dx.doi.org/10.1080/01630563.2018.1562469 http://hdl.handle.net/11449/188723 |
identifier_str_mv |
Numerical Functional Analysis and Optimization, v. 40, n. 8, p. 867-887, 2019. 1532-2467 0163-0563 10.1080/01630563.2018.1562469 2-s2.0-85061443593 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Numerical Functional Analysis and Optimization |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
867-887 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128616034205696 |