Neural approach for automatic identification of induction motor load torque in real-time industrial applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/195869 |
Resumo: | Induction motors are widely used in several industrial sectors. However, the dimensioning of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since the proposed approach uses current, voltage and speed values as the only input parameters, one of its potentialities is related to the facility of hardware implementation for industrial environments and field applications. Simulation results are also presented to validate the proposed approach. |
id |
UNSP_a96147ca36064180347d77e0ba6e2d00 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/195869 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Neural approach for automatic identification of induction motor load torque in real-time industrial applicationsinduction motorsload modelingneural networksparameter estimationsystem identificationInduction motors are widely used in several industrial sectors. However, the dimensioning of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since the proposed approach uses current, voltage and speed values as the only input parameters, one of its potentialities is related to the facility of hardware implementation for industrial environments and field applications. Simulation results are also presented to validate the proposed approach.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Sao Paulo, Dept Elect Engn, EESC, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, BrazilUniv Sao Paulo, Dept Elect Engn, UNESP, BR-17033360 Sao Carlos, SP, BrazilUniv Sao Paulo, Dept Elect Engn, UNESP, BR-17033360 Sao Carlos, SP, BrazilCNPq: 06/56093-3CNPq: 14236/2005-4IeeeUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Goedtel, A.Silva, I. N. daSerni, P. J. A. [UNESP]IEEE2020-12-10T18:06:04Z2020-12-10T18:06:04Z2006-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject918-+2006 Ieee International Conference On Power Electronic, Drives And Energy Systems, Vols 1 And 2. New York: Ieee, p. 918-+, 2006.http://hdl.handle.net/11449/195869WOS:000245596300169Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2006 Ieee International Conference On Power Electronic, Drives And Energy Systems, Vols 1 And 2info:eu-repo/semantics/openAccess2024-06-28T13:34:36Zoai:repositorio.unesp.br:11449/195869Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:18:23.153361Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications |
title |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications |
spellingShingle |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications Goedtel, A. induction motors load modeling neural networks parameter estimation system identification |
title_short |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications |
title_full |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications |
title_fullStr |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications |
title_full_unstemmed |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications |
title_sort |
Neural approach for automatic identification of induction motor load torque in real-time industrial applications |
author |
Goedtel, A. |
author_facet |
Goedtel, A. Silva, I. N. da Serni, P. J. A. [UNESP] IEEE |
author_role |
author |
author2 |
Silva, I. N. da Serni, P. J. A. [UNESP] IEEE |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Goedtel, A. Silva, I. N. da Serni, P. J. A. [UNESP] IEEE |
dc.subject.por.fl_str_mv |
induction motors load modeling neural networks parameter estimation system identification |
topic |
induction motors load modeling neural networks parameter estimation system identification |
description |
Induction motors are widely used in several industrial sectors. However, the dimensioning of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since the proposed approach uses current, voltage and speed values as the only input parameters, one of its potentialities is related to the facility of hardware implementation for industrial environments and field applications. Simulation results are also presented to validate the proposed approach. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-01-01 2020-12-10T18:06:04Z 2020-12-10T18:06:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2006 Ieee International Conference On Power Electronic, Drives And Energy Systems, Vols 1 And 2. New York: Ieee, p. 918-+, 2006. http://hdl.handle.net/11449/195869 WOS:000245596300169 |
identifier_str_mv |
2006 Ieee International Conference On Power Electronic, Drives And Energy Systems, Vols 1 And 2. New York: Ieee, p. 918-+, 2006. WOS:000245596300169 |
url |
http://hdl.handle.net/11449/195869 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2006 Ieee International Conference On Power Electronic, Drives And Energy Systems, Vols 1 And 2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
918-+ |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129050072317952 |