VDBSCAN plus : Performance Optimization Based on GPU Parallelism

Detalhes bibliográficos
Autor(a) principal: Valencio, Carlos Roberto [UNESP]
Data de Publicação: 2013
Outros Autores: Daniel, Guilherme Priolli [UNESP], Medeiros, Camila Alves de [UNESP], Cansian, Adriano Mauro [UNESP], Baida, Luiz Carlos [UNESP], Ferrari, Fernando [UNESP], Horng, S. J.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/PDCAT.2013.11
http://hdl.handle.net/11449/197449
Resumo: Spatial data mining techniques enable the knowledge extraction from spatial databases. However, the high computational cost and the complexity of algorithms are some of the main problems in this area. This work proposes a new algorithm referred to as VDBSCAN+, which derived from the algorithm VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) and focuses on the use of parallelism techniques in GPU (Graphics Processing Unit), obtaining a significant performance improvement, by increasing the runtime by 95% in comparison with VDBSCAN.
id UNSP_aa87049d9f823f1309ca7d05b09fca5e
oai_identifier_str oai:repositorio.unesp.br:11449/197449
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling VDBSCAN plus : Performance Optimization Based on GPU Parallelismspatial data miningspatial clusteringGPU (Graphics Processing Unit)VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise)Spatial data mining techniques enable the knowledge extraction from spatial databases. However, the high computational cost and the complexity of algorithms are some of the main problems in this area. This work proposes a new algorithm referred to as VDBSCAN+, which derived from the algorithm VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) and focuses on the use of parallelism techniques in GPU (Graphics Processing Unit), obtaining a significant performance improvement, by increasing the runtime by 95% in comparison with VDBSCAN.Sao Paulo State Univ, Dept Ciencias Comp & Estat, Sao Paulo, BrazilSao Paulo State Univ, Dept Ciencias Comp & Estat, Sao Paulo, BrazilIeeeUniversidade Estadual Paulista (Unesp)Valencio, Carlos Roberto [UNESP]Daniel, Guilherme Priolli [UNESP]Medeiros, Camila Alves de [UNESP]Cansian, Adriano Mauro [UNESP]Baida, Luiz Carlos [UNESP]Ferrari, Fernando [UNESP]Horng, S. J.2020-12-10T22:31:55Z2020-12-10T22:31:55Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject23-28http://dx.doi.org/10.1109/PDCAT.2013.112013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 23-28, 2013.http://hdl.handle.net/11449/19744910.1109/PDCAT.2013.11WOS:000361018500005Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat)info:eu-repo/semantics/openAccess2021-10-23T14:41:00Zoai:repositorio.unesp.br:11449/197449Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:51:08.191314Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv VDBSCAN plus : Performance Optimization Based on GPU Parallelism
title VDBSCAN plus : Performance Optimization Based on GPU Parallelism
spellingShingle VDBSCAN plus : Performance Optimization Based on GPU Parallelism
Valencio, Carlos Roberto [UNESP]
spatial data mining
spatial clustering
GPU (Graphics Processing Unit)
VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise)
title_short VDBSCAN plus : Performance Optimization Based on GPU Parallelism
title_full VDBSCAN plus : Performance Optimization Based on GPU Parallelism
title_fullStr VDBSCAN plus : Performance Optimization Based on GPU Parallelism
title_full_unstemmed VDBSCAN plus : Performance Optimization Based on GPU Parallelism
title_sort VDBSCAN plus : Performance Optimization Based on GPU Parallelism
author Valencio, Carlos Roberto [UNESP]
author_facet Valencio, Carlos Roberto [UNESP]
Daniel, Guilherme Priolli [UNESP]
Medeiros, Camila Alves de [UNESP]
Cansian, Adriano Mauro [UNESP]
Baida, Luiz Carlos [UNESP]
Ferrari, Fernando [UNESP]
Horng, S. J.
author_role author
author2 Daniel, Guilherme Priolli [UNESP]
Medeiros, Camila Alves de [UNESP]
Cansian, Adriano Mauro [UNESP]
Baida, Luiz Carlos [UNESP]
Ferrari, Fernando [UNESP]
Horng, S. J.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Valencio, Carlos Roberto [UNESP]
Daniel, Guilherme Priolli [UNESP]
Medeiros, Camila Alves de [UNESP]
Cansian, Adriano Mauro [UNESP]
Baida, Luiz Carlos [UNESP]
Ferrari, Fernando [UNESP]
Horng, S. J.
dc.subject.por.fl_str_mv spatial data mining
spatial clustering
GPU (Graphics Processing Unit)
VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise)
topic spatial data mining
spatial clustering
GPU (Graphics Processing Unit)
VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise)
description Spatial data mining techniques enable the knowledge extraction from spatial databases. However, the high computational cost and the complexity of algorithms are some of the main problems in this area. This work proposes a new algorithm referred to as VDBSCAN+, which derived from the algorithm VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) and focuses on the use of parallelism techniques in GPU (Graphics Processing Unit), obtaining a significant performance improvement, by increasing the runtime by 95% in comparison with VDBSCAN.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01
2020-12-10T22:31:55Z
2020-12-10T22:31:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/PDCAT.2013.11
2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 23-28, 2013.
http://hdl.handle.net/11449/197449
10.1109/PDCAT.2013.11
WOS:000361018500005
url http://dx.doi.org/10.1109/PDCAT.2013.11
http://hdl.handle.net/11449/197449
identifier_str_mv 2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 23-28, 2013.
10.1109/PDCAT.2013.11
WOS:000361018500005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 23-28
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129366451814400