VDBSCAN plus : Performance Optimization Based on GPU Parallelism
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/PDCAT.2013.11 http://hdl.handle.net/11449/197449 |
Resumo: | Spatial data mining techniques enable the knowledge extraction from spatial databases. However, the high computational cost and the complexity of algorithms are some of the main problems in this area. This work proposes a new algorithm referred to as VDBSCAN+, which derived from the algorithm VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) and focuses on the use of parallelism techniques in GPU (Graphics Processing Unit), obtaining a significant performance improvement, by increasing the runtime by 95% in comparison with VDBSCAN. |
id |
UNSP_aa87049d9f823f1309ca7d05b09fca5e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/197449 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
VDBSCAN plus : Performance Optimization Based on GPU Parallelismspatial data miningspatial clusteringGPU (Graphics Processing Unit)VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise)Spatial data mining techniques enable the knowledge extraction from spatial databases. However, the high computational cost and the complexity of algorithms are some of the main problems in this area. This work proposes a new algorithm referred to as VDBSCAN+, which derived from the algorithm VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) and focuses on the use of parallelism techniques in GPU (Graphics Processing Unit), obtaining a significant performance improvement, by increasing the runtime by 95% in comparison with VDBSCAN.Sao Paulo State Univ, Dept Ciencias Comp & Estat, Sao Paulo, BrazilSao Paulo State Univ, Dept Ciencias Comp & Estat, Sao Paulo, BrazilIeeeUniversidade Estadual Paulista (Unesp)Valencio, Carlos Roberto [UNESP]Daniel, Guilherme Priolli [UNESP]Medeiros, Camila Alves de [UNESP]Cansian, Adriano Mauro [UNESP]Baida, Luiz Carlos [UNESP]Ferrari, Fernando [UNESP]Horng, S. J.2020-12-10T22:31:55Z2020-12-10T22:31:55Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject23-28http://dx.doi.org/10.1109/PDCAT.2013.112013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 23-28, 2013.http://hdl.handle.net/11449/19744910.1109/PDCAT.2013.11WOS:000361018500005Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat)info:eu-repo/semantics/openAccess2021-10-23T14:41:00Zoai:repositorio.unesp.br:11449/197449Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:51:08.191314Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism |
title |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism |
spellingShingle |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism Valencio, Carlos Roberto [UNESP] spatial data mining spatial clustering GPU (Graphics Processing Unit) VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) |
title_short |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism |
title_full |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism |
title_fullStr |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism |
title_full_unstemmed |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism |
title_sort |
VDBSCAN plus : Performance Optimization Based on GPU Parallelism |
author |
Valencio, Carlos Roberto [UNESP] |
author_facet |
Valencio, Carlos Roberto [UNESP] Daniel, Guilherme Priolli [UNESP] Medeiros, Camila Alves de [UNESP] Cansian, Adriano Mauro [UNESP] Baida, Luiz Carlos [UNESP] Ferrari, Fernando [UNESP] Horng, S. J. |
author_role |
author |
author2 |
Daniel, Guilherme Priolli [UNESP] Medeiros, Camila Alves de [UNESP] Cansian, Adriano Mauro [UNESP] Baida, Luiz Carlos [UNESP] Ferrari, Fernando [UNESP] Horng, S. J. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Valencio, Carlos Roberto [UNESP] Daniel, Guilherme Priolli [UNESP] Medeiros, Camila Alves de [UNESP] Cansian, Adriano Mauro [UNESP] Baida, Luiz Carlos [UNESP] Ferrari, Fernando [UNESP] Horng, S. J. |
dc.subject.por.fl_str_mv |
spatial data mining spatial clustering GPU (Graphics Processing Unit) VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) |
topic |
spatial data mining spatial clustering GPU (Graphics Processing Unit) VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) |
description |
Spatial data mining techniques enable the knowledge extraction from spatial databases. However, the high computational cost and the complexity of algorithms are some of the main problems in this area. This work proposes a new algorithm referred to as VDBSCAN+, which derived from the algorithm VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) and focuses on the use of parallelism techniques in GPU (Graphics Processing Unit), obtaining a significant performance improvement, by increasing the runtime by 95% in comparison with VDBSCAN. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01 2020-12-10T22:31:55Z 2020-12-10T22:31:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/PDCAT.2013.11 2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 23-28, 2013. http://hdl.handle.net/11449/197449 10.1109/PDCAT.2013.11 WOS:000361018500005 |
url |
http://dx.doi.org/10.1109/PDCAT.2013.11 http://hdl.handle.net/11449/197449 |
identifier_str_mv |
2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat). New York: Ieee, p. 23-28, 2013. 10.1109/PDCAT.2013.11 WOS:000361018500005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2013 International Conference On Parallel And Distributed Computing, Applications And Technologies (pdcat) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
23-28 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129366451814400 |