Stability of a Bose-condensed mixture on a bubble trap
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevA.104.033318 http://hdl.handle.net/11449/229607 |
Resumo: | Stability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability, we follow the Bogoliubov-de Gennes method for the analysis of perturbed solutions, with the constraint that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full numerical solutions of the time-dependent Gross-Pitaevskii equation. |
id |
UNSP_aa96656c8f632271a3508923c4feaade |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/229607 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Stability of a Bose-condensed mixture on a bubble trapStability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability, we follow the Bogoliubov-de Gennes method for the analysis of perturbed solutions, with the constraint that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full numerical solutions of the time-dependent Gross-Pitaevskii equation.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Instituto de Física Universidade de São PauloInstituto de Física Teórica Universidade Estadual Paulista, SPInstituto de Física Teórica Universidade Estadual Paulista, SPFAPESP: 2018/02737-4 (A.A.)CNPq: 304469-2019-0 (L.T.)CAPES: 88887.374855/2019-00 (L.B.)Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Andriati, AlexBrito, LeonardoTomio, Lauro [UNESP]Gammal, Arnaldo2022-04-29T08:33:34Z2022-04-29T08:33:34Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevA.104.033318Physical Review A, v. 104, n. 3, 2021.2469-99342469-9926http://hdl.handle.net/11449/22960710.1103/PhysRevA.104.0333182-s2.0-85115890843Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2022-04-29T08:33:34Zoai:repositorio.unesp.br:11449/229607Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:07:59.727547Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Stability of a Bose-condensed mixture on a bubble trap |
title |
Stability of a Bose-condensed mixture on a bubble trap |
spellingShingle |
Stability of a Bose-condensed mixture on a bubble trap Andriati, Alex |
title_short |
Stability of a Bose-condensed mixture on a bubble trap |
title_full |
Stability of a Bose-condensed mixture on a bubble trap |
title_fullStr |
Stability of a Bose-condensed mixture on a bubble trap |
title_full_unstemmed |
Stability of a Bose-condensed mixture on a bubble trap |
title_sort |
Stability of a Bose-condensed mixture on a bubble trap |
author |
Andriati, Alex |
author_facet |
Andriati, Alex Brito, Leonardo Tomio, Lauro [UNESP] Gammal, Arnaldo |
author_role |
author |
author2 |
Brito, Leonardo Tomio, Lauro [UNESP] Gammal, Arnaldo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Andriati, Alex Brito, Leonardo Tomio, Lauro [UNESP] Gammal, Arnaldo |
description |
Stability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability, we follow the Bogoliubov-de Gennes method for the analysis of perturbed solutions, with the constraint that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full numerical solutions of the time-dependent Gross-Pitaevskii equation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-01 2022-04-29T08:33:34Z 2022-04-29T08:33:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevA.104.033318 Physical Review A, v. 104, n. 3, 2021. 2469-9934 2469-9926 http://hdl.handle.net/11449/229607 10.1103/PhysRevA.104.033318 2-s2.0-85115890843 |
url |
http://dx.doi.org/10.1103/PhysRevA.104.033318 http://hdl.handle.net/11449/229607 |
identifier_str_mv |
Physical Review A, v. 104, n. 3, 2021. 2469-9934 2469-9926 10.1103/PhysRevA.104.033318 2-s2.0-85115890843 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review A |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128899129802752 |