Stability of a Bose-condensed mixture on a bubble trap

Detalhes bibliográficos
Autor(a) principal: Andriati, Alex
Data de Publicação: 2021
Outros Autores: Brito, Leonardo, Tomio, Lauro [UNESP], Gammal, Arnaldo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevA.104.033318
http://hdl.handle.net/11449/229607
Resumo: Stability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability, we follow the Bogoliubov-de Gennes method for the analysis of perturbed solutions, with the constraint that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full numerical solutions of the time-dependent Gross-Pitaevskii equation.
id UNSP_aa96656c8f632271a3508923c4feaade
oai_identifier_str oai:repositorio.unesp.br:11449/229607
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Stability of a Bose-condensed mixture on a bubble trapStability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability, we follow the Bogoliubov-de Gennes method for the analysis of perturbed solutions, with the constraint that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full numerical solutions of the time-dependent Gross-Pitaevskii equation.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Instituto de Física Universidade de São PauloInstituto de Física Teórica Universidade Estadual Paulista, SPInstituto de Física Teórica Universidade Estadual Paulista, SPFAPESP: 2018/02737-4 (A.A.)CNPq: 304469-2019-0 (L.T.)CAPES: 88887.374855/2019-00 (L.B.)Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Andriati, AlexBrito, LeonardoTomio, Lauro [UNESP]Gammal, Arnaldo2022-04-29T08:33:34Z2022-04-29T08:33:34Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevA.104.033318Physical Review A, v. 104, n. 3, 2021.2469-99342469-9926http://hdl.handle.net/11449/22960710.1103/PhysRevA.104.0333182-s2.0-85115890843Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Ainfo:eu-repo/semantics/openAccess2022-04-29T08:33:34Zoai:repositorio.unesp.br:11449/229607Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:07:59.727547Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Stability of a Bose-condensed mixture on a bubble trap
title Stability of a Bose-condensed mixture on a bubble trap
spellingShingle Stability of a Bose-condensed mixture on a bubble trap
Andriati, Alex
title_short Stability of a Bose-condensed mixture on a bubble trap
title_full Stability of a Bose-condensed mixture on a bubble trap
title_fullStr Stability of a Bose-condensed mixture on a bubble trap
title_full_unstemmed Stability of a Bose-condensed mixture on a bubble trap
title_sort Stability of a Bose-condensed mixture on a bubble trap
author Andriati, Alex
author_facet Andriati, Alex
Brito, Leonardo
Tomio, Lauro [UNESP]
Gammal, Arnaldo
author_role author
author2 Brito, Leonardo
Tomio, Lauro [UNESP]
Gammal, Arnaldo
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Andriati, Alex
Brito, Leonardo
Tomio, Lauro [UNESP]
Gammal, Arnaldo
description Stability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability, we follow the Bogoliubov-de Gennes method for the analysis of perturbed solutions, with the constraint that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full numerical solutions of the time-dependent Gross-Pitaevskii equation.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01
2022-04-29T08:33:34Z
2022-04-29T08:33:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevA.104.033318
Physical Review A, v. 104, n. 3, 2021.
2469-9934
2469-9926
http://hdl.handle.net/11449/229607
10.1103/PhysRevA.104.033318
2-s2.0-85115890843
url http://dx.doi.org/10.1103/PhysRevA.104.033318
http://hdl.handle.net/11449/229607
identifier_str_mv Physical Review A, v. 104, n. 3, 2021.
2469-9934
2469-9926
10.1103/PhysRevA.104.033318
2-s2.0-85115890843
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review A
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128899129802752