Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0140 http://hdl.handle.net/11449/213116 |
Resumo: | A review on the Foucault pendulum motion is presented using Cartesian coordinates for the ideal case and for small amplitude of oscillations. The choice of referential frames, the formulation and solution of Newton’s differential equation for the non-inertial frame of the Earth and the validity of the approximations used to simplify the determination of the solution are given. Using the angular position of the trajectory cusps, a new method to determine the precession angular velocity of the Foucault pendulum is shown. The pendulum bob trajectories and velocities for the referential frame in rotation with the Earth as well as for the inertial frame are given and the Chevilliet theorem was demonstrated. In addition, the pendulum bob trajectories are shown when an initial velocity is impinged in the direction perpendicular to the pendulum oscillation plane. |
id |
UNSP_aae22ac682ccd059df906226e6ff4e5d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/213116 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinatesFoucault pendulumprecession velocityA review on the Foucault pendulum motion is presented using Cartesian coordinates for the ideal case and for small amplitude of oscillations. The choice of referential frames, the formulation and solution of Newton’s differential equation for the non-inertial frame of the Earth and the validity of the approximations used to simplify the determination of the solution are given. Using the angular position of the trajectory cusps, a new method to determine the precession angular velocity of the Foucault pendulum is shown. The pendulum bob trajectories and velocities for the referential frame in rotation with the Earth as well as for the inertial frame are given and the Chevilliet theorem was demonstrated. In addition, the pendulum bob trajectories are shown when an initial velocity is impinged in the direction perpendicular to the pendulum oscillation plane.Universidade de São Paulo, Instituto de Física de São CarlosUniversidade Estadual Paulista, Faculdade de Ciências e TecnologiaUniversidade Estadual Paulista, Faculdade de Ciências e TecnologiaSociedade Brasileira de FísicaUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Giacometti, José A. [UNESP]2021-07-14T10:50:17Z2021-07-14T10:50:17Z2021-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article-application/pdfhttp://dx.doi.org/10.1590/1806-9126-RBEF-2019-0140Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 43, p. -, 2021.1806-11171806-9126http://hdl.handle.net/11449/21311610.1590/1806-9126-RBEF-2019-0140S1806-11172021000100418S1806-11172021000100418.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Ensino de Físicainfo:eu-repo/semantics/openAccess2024-06-19T12:44:40Zoai:repositorio.unesp.br:11449/213116Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:31:37.899878Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates |
title |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates |
spellingShingle |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates Giacometti, José A. [UNESP] Foucault pendulum precession velocity |
title_short |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates |
title_full |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates |
title_fullStr |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates |
title_full_unstemmed |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates |
title_sort |
Foucault pendulum revisited, the determination of precession angular velocity using Cartesian coordinates |
author |
Giacometti, José A. [UNESP] |
author_facet |
Giacometti, José A. [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Giacometti, José A. [UNESP] |
dc.subject.por.fl_str_mv |
Foucault pendulum precession velocity |
topic |
Foucault pendulum precession velocity |
description |
A review on the Foucault pendulum motion is presented using Cartesian coordinates for the ideal case and for small amplitude of oscillations. The choice of referential frames, the formulation and solution of Newton’s differential equation for the non-inertial frame of the Earth and the validity of the approximations used to simplify the determination of the solution are given. Using the angular position of the trajectory cusps, a new method to determine the precession angular velocity of the Foucault pendulum is shown. The pendulum bob trajectories and velocities for the referential frame in rotation with the Earth as well as for the inertial frame are given and the Chevilliet theorem was demonstrated. In addition, the pendulum bob trajectories are shown when an initial velocity is impinged in the direction perpendicular to the pendulum oscillation plane. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-14T10:50:17Z 2021-07-14T10:50:17Z 2021-02-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0140 Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 43, p. -, 2021. 1806-1117 1806-9126 http://hdl.handle.net/11449/213116 10.1590/1806-9126-RBEF-2019-0140 S1806-11172021000100418 S1806-11172021000100418.pdf |
url |
http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0140 http://hdl.handle.net/11449/213116 |
identifier_str_mv |
Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 43, p. -, 2021. 1806-1117 1806-9126 10.1590/1806-9126-RBEF-2019-0140 S1806-11172021000100418 S1806-11172021000100418.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Brasileira de Ensino de Física |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
- application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129081353437184 |