Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação

Detalhes bibliográficos
Autor(a) principal: Musardo, Gustavo Borges [UNESP]
Data de Publicação: 2006
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/94490
Resumo: No Brasil, a maior parte da energia elétrica disponível é gerada por usinas hidrelétricas as quais contam com grande número de turbinas hidráulicas. Durante sua operação estas turbinas sofrem sérios danos provenientes tanto de natureza mecânica como também hidráulica. Fenômenos de perda de massa e também trincas e rachaduras são alguns dos principais problemas que ocorrem devido a um fenômeno chamado de erosão cavitacional, que comumente é recuperado por soldagem. Sendo assim, grandes níveis de resistência à cavitação vêm sendo obtidos com a deposição de aços inoxidáveis com a presença de cobalto pelo processo de soldagem a arco com proteção gasosa. Neste trabalho, seis amostras feitas de aço-carbono ASTM A36, as quais foram extraídas de retalhos de turbinas, foram usadas como metal de base para as amostras. Usando um processo a arco elétrico com proteção gasosa (GMAW) em posição plana, duas camadas de aço AWS E70-S6 (1,2 mm de diâmetro) foi depositada em todas as amostras, e, somente em três das amostras foram depositadas duas camadas de amanteigamento com o arame de aço inoxidável AWS E309-T1 (1,6 mm de diâmetro) usando o mesmo processo, onde foi utilizado como proteção gasosa uma mistura de 75% de dióxido de carbono e 25% de argônio. A energia de soldagem nominal nestes casos foi de 0,5 kJ/mm. Por final, mais duas camadas de aço inoxidável com cobalto, liga resistente à cavitação foram depositadas por arco pulsado, com energia de soldagem nominal de 0,5 a 0,8kJ/mm, com uma mistura de gases de 98% de argônio e 2% de oxigênio como proteção. Secções transversais das amostras foram preparadas, devidamente lixadas e depois polidas com alumina 1,0μm, seguido de ataque químico moderado com Villela para observação de microestruturas. Foi feito o estudo de microdureza Vickers com carga padrão de 0,4 N e espaçamento regular (0,4 mm)...
id UNSP_abe61b35bdd4825d021a38e1ec9ea209
oai_identifier_str oai:repositorio.unesp.br:11449/94490
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitaçãoTurbinas hidraulicasMicroestruturaMicroscopiaResistência à cavitaçãoTurbinesMicrostructureMicroscopyWeld metalCobaltStainless steelInclusionsDelta ferriteDendritesNo Brasil, a maior parte da energia elétrica disponível é gerada por usinas hidrelétricas as quais contam com grande número de turbinas hidráulicas. Durante sua operação estas turbinas sofrem sérios danos provenientes tanto de natureza mecânica como também hidráulica. Fenômenos de perda de massa e também trincas e rachaduras são alguns dos principais problemas que ocorrem devido a um fenômeno chamado de erosão cavitacional, que comumente é recuperado por soldagem. Sendo assim, grandes níveis de resistência à cavitação vêm sendo obtidos com a deposição de aços inoxidáveis com a presença de cobalto pelo processo de soldagem a arco com proteção gasosa. Neste trabalho, seis amostras feitas de aço-carbono ASTM A36, as quais foram extraídas de retalhos de turbinas, foram usadas como metal de base para as amostras. Usando um processo a arco elétrico com proteção gasosa (GMAW) em posição plana, duas camadas de aço AWS E70-S6 (1,2 mm de diâmetro) foi depositada em todas as amostras, e, somente em três das amostras foram depositadas duas camadas de amanteigamento com o arame de aço inoxidável AWS E309-T1 (1,6 mm de diâmetro) usando o mesmo processo, onde foi utilizado como proteção gasosa uma mistura de 75% de dióxido de carbono e 25% de argônio. A energia de soldagem nominal nestes casos foi de 0,5 kJ/mm. Por final, mais duas camadas de aço inoxidável com cobalto, liga resistente à cavitação foram depositadas por arco pulsado, com energia de soldagem nominal de 0,5 a 0,8kJ/mm, com uma mistura de gases de 98% de argônio e 2% de oxigênio como proteção. Secções transversais das amostras foram preparadas, devidamente lixadas e depois polidas com alumina 1,0μm, seguido de ataque químico moderado com Villela para observação de microestruturas. Foi feito o estudo de microdureza Vickers com carga padrão de 0,4 N e espaçamento regular (0,4 mm)...Nowadays most of the power supply used in Brazil is provided for a large number of hydraulic turbines. During its operation in hydroelectric power plants, these turbines usually have been damaged either mechanical or hydraulic reasons. So, catastrophic cracking and loss-of-mass due to cavitation erosion are main problems which are commonly repaired by welding. Higher levels of resistance to cavitation erosion have been attained with surface deposition of a cobalt-alloyed stainless steel coating by gas-protected arc welding techniques. In the present work six plates, which were machined from blades of hydraulic turbines made with ASTM A36 carbon steel grade, were used as base metal. Using manual gas-metal arc welding (GMAW) in flat weld position two layers of AWS E70-S6 carbon steel (1.2 mm diameter) were deposited on all samples. Only 3 samples two buttering layers were deposited with AWS E309-T1 flux-cored wire (1.6 mm diameter) using same processing, where were applied a 75% carbon dioxide - 25% argon mixture as protection gas. The nominal heat input used in all layers was approximately 0.5 kJ/mm. At the last welding deposition another two cobalt-alloyed, cavitation resistant, stainless steel cladding layers were deposited under pulsed arc with a nominal heat input of 0.5 to 0.8kJ/mm, being used for them a protective gas mixture of 98% argon - 2% oxygen. Transverse sections of weld deposit were prepared according standard grinding method (up to 1200-grit SiC paper) and final mechanical polishing using 1.0μm alumina, followed by moderate etching in Villela reagent for microstructural observation. Vickers microhardness measurements were carried out at standard load (0.4 N) and regular spacings (0,4mm) from surface to base metal. Light microscopy (LM) was used to determine average size of inclusions, which was measured from digitalized images using a freeware image analysis ...(Complete abstract, click electronic access below)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista (Unesp)Gallego, Juno [UNESP]Universidade Estadual Paulista (Unesp)Musardo, Gustavo Borges [UNESP]2014-06-11T19:27:13Z2014-06-11T19:27:13Z2006-10-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis98 f. : il.application/pdfMUSARDO, Gustavo Borges. Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação. 2006. 98 f. Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, 2006.http://hdl.handle.net/11449/94490000557857musardo_gb_me_ilha.pdf33004099082P271938722948186890000-0002-5477-8139Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPpor159105info:eu-repo/semantics/openAccess2024-08-05T18:16:17Zoai:repositorio.unesp.br:11449/94490Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:16:17Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
title Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
spellingShingle Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
Musardo, Gustavo Borges [UNESP]
Turbinas hidraulicas
Microestrutura
Microscopia
Resistência à cavitação
Turbines
Microstructure
Microscopy
Weld metal
Cobalt
Stainless steel
Inclusions
Delta ferrite
Dendrites
title_short Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
title_full Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
title_fullStr Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
title_full_unstemmed Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
title_sort Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação
author Musardo, Gustavo Borges [UNESP]
author_facet Musardo, Gustavo Borges [UNESP]
author_role author
dc.contributor.none.fl_str_mv Gallego, Juno [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Musardo, Gustavo Borges [UNESP]
dc.subject.por.fl_str_mv Turbinas hidraulicas
Microestrutura
Microscopia
Resistência à cavitação
Turbines
Microstructure
Microscopy
Weld metal
Cobalt
Stainless steel
Inclusions
Delta ferrite
Dendrites
topic Turbinas hidraulicas
Microestrutura
Microscopia
Resistência à cavitação
Turbines
Microstructure
Microscopy
Weld metal
Cobalt
Stainless steel
Inclusions
Delta ferrite
Dendrites
description No Brasil, a maior parte da energia elétrica disponível é gerada por usinas hidrelétricas as quais contam com grande número de turbinas hidráulicas. Durante sua operação estas turbinas sofrem sérios danos provenientes tanto de natureza mecânica como também hidráulica. Fenômenos de perda de massa e também trincas e rachaduras são alguns dos principais problemas que ocorrem devido a um fenômeno chamado de erosão cavitacional, que comumente é recuperado por soldagem. Sendo assim, grandes níveis de resistência à cavitação vêm sendo obtidos com a deposição de aços inoxidáveis com a presença de cobalto pelo processo de soldagem a arco com proteção gasosa. Neste trabalho, seis amostras feitas de aço-carbono ASTM A36, as quais foram extraídas de retalhos de turbinas, foram usadas como metal de base para as amostras. Usando um processo a arco elétrico com proteção gasosa (GMAW) em posição plana, duas camadas de aço AWS E70-S6 (1,2 mm de diâmetro) foi depositada em todas as amostras, e, somente em três das amostras foram depositadas duas camadas de amanteigamento com o arame de aço inoxidável AWS E309-T1 (1,6 mm de diâmetro) usando o mesmo processo, onde foi utilizado como proteção gasosa uma mistura de 75% de dióxido de carbono e 25% de argônio. A energia de soldagem nominal nestes casos foi de 0,5 kJ/mm. Por final, mais duas camadas de aço inoxidável com cobalto, liga resistente à cavitação foram depositadas por arco pulsado, com energia de soldagem nominal de 0,5 a 0,8kJ/mm, com uma mistura de gases de 98% de argônio e 2% de oxigênio como proteção. Secções transversais das amostras foram preparadas, devidamente lixadas e depois polidas com alumina 1,0μm, seguido de ataque químico moderado com Villela para observação de microestruturas. Foi feito o estudo de microdureza Vickers com carga padrão de 0,4 N e espaçamento regular (0,4 mm)...
publishDate 2006
dc.date.none.fl_str_mv 2006-10-27
2014-06-11T19:27:13Z
2014-06-11T19:27:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MUSARDO, Gustavo Borges. Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação. 2006. 98 f. Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, 2006.
http://hdl.handle.net/11449/94490
000557857
musardo_gb_me_ilha.pdf
33004099082P2
7193872294818689
0000-0002-5477-8139
identifier_str_mv MUSARDO, Gustavo Borges. Análise microestrutural de revestimentos usados no reparo de turbinas hidráulicas danificadas pela cavitação. 2006. 98 f. Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, 2006.
000557857
musardo_gb_me_ilha.pdf
33004099082P2
7193872294818689
0000-0002-5477-8139
url http://hdl.handle.net/11449/94490
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 159105
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 98 f. : il.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128174248165376