Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais

Detalhes bibliográficos
Autor(a) principal: Freitas, Luciana Paro Scarin [UNESP]
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/143894
Resumo: O dióxido de carbono (CO2) é considerado um dos principais gases do efeito estufa adicional e contribui significativamente para as mudanças climáticas globais. Áreas agrícolas oferecem uma oportunidade para mitigar esse efeito, uma vez que, dependendo de seu uso e manejo, são capazes de armazenar grandes quantidades de carbono, retirando-as da atmosfera. A produção de CO2 no solo é resultado de processos biológicos, como a decomposição da matéria orgânica e respiração de raízes e organismos do solo, fenômeno chamado de emissão de CO2 do solo (FCO2). O objetivo deste trabalho foi utilizar as redes neurais artificiais para estudo e previsão de padrões espaço-temporais da emissão de CO2 do solo em áreas de cana-de-açúcar em sistema de cana crua, colheita mecanizada, quando grandes quantidades de palhas são depositadas sobre a superfície do solo. Valores de FCO2 foram coletados em áreas de cultivo comercial no Sudeste do Estado de São Paulo, registrados por meio do sistema LI-8100, em gradeados amostrais para determinação da variabilidade espaçotemporal de FCO2, e atributos físicos e químicos do solo. Foram utilizados dados referentes a estudos realizados nos anos de 2008, 2010 e 2012, no período após a operação de colheita mecânica da cultura. Uma rede neural Perceptron Multi-Camadas via algoritmo backpropagation foi aplicada para estimar a emissão de FCO2 do ano de 2012, utilizando os dados referentes aos anos de 2008 e 2010 para treinamento da rede neural. A rede neural inicialmente apresentou um MAPE de 18,3852 coeficiente de determinação R2 de 0,9188. Os dados obtidos do FCO2 observado e do FCO2 estimado apresentam moderada dependência espacial, e pelos mapas do padrão espacial do fluxo de CO2 é observado que a rede neural apresentou considerável similaridade com os dados observados, identificando os pontos característicos de maior emissão como também os de menor emissão de CO2. Portanto, os resultados indicam que a rede neural artificial pode fornecer estimativas com confiabilidade para a avaliação de FCO2 a partir de dados de atributos físicos e químicos do solo, sendo capaz de caracterizar a variabilidade espaçotemporal desse atributo em áreas de cana-de-açúcar, sob o sistema de cana crua no Sudeste do Estado de São Paulo.
id UNSP_ad4bb9e735d93595c36cbc9cf862c1e0
oai_identifier_str oai:repositorio.unesp.br:11449/143894
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais ArtificiaisForecast Variability of Soil CO2 emission in Cane Sugar Areas Using Artificial Neural NetworksArtificial neural networksForecasting modelsRedes neurais artificiaisVariabilidade espacialModelos de previsãoSpatial variabilityO dióxido de carbono (CO2) é considerado um dos principais gases do efeito estufa adicional e contribui significativamente para as mudanças climáticas globais. Áreas agrícolas oferecem uma oportunidade para mitigar esse efeito, uma vez que, dependendo de seu uso e manejo, são capazes de armazenar grandes quantidades de carbono, retirando-as da atmosfera. A produção de CO2 no solo é resultado de processos biológicos, como a decomposição da matéria orgânica e respiração de raízes e organismos do solo, fenômeno chamado de emissão de CO2 do solo (FCO2). O objetivo deste trabalho foi utilizar as redes neurais artificiais para estudo e previsão de padrões espaço-temporais da emissão de CO2 do solo em áreas de cana-de-açúcar em sistema de cana crua, colheita mecanizada, quando grandes quantidades de palhas são depositadas sobre a superfície do solo. Valores de FCO2 foram coletados em áreas de cultivo comercial no Sudeste do Estado de São Paulo, registrados por meio do sistema LI-8100, em gradeados amostrais para determinação da variabilidade espaçotemporal de FCO2, e atributos físicos e químicos do solo. Foram utilizados dados referentes a estudos realizados nos anos de 2008, 2010 e 2012, no período após a operação de colheita mecânica da cultura. Uma rede neural Perceptron Multi-Camadas via algoritmo backpropagation foi aplicada para estimar a emissão de FCO2 do ano de 2012, utilizando os dados referentes aos anos de 2008 e 2010 para treinamento da rede neural. A rede neural inicialmente apresentou um MAPE de 18,3852 coeficiente de determinação R2 de 0,9188. Os dados obtidos do FCO2 observado e do FCO2 estimado apresentam moderada dependência espacial, e pelos mapas do padrão espacial do fluxo de CO2 é observado que a rede neural apresentou considerável similaridade com os dados observados, identificando os pontos característicos de maior emissão como também os de menor emissão de CO2. Portanto, os resultados indicam que a rede neural artificial pode fornecer estimativas com confiabilidade para a avaliação de FCO2 a partir de dados de atributos físicos e químicos do solo, sendo capaz de caracterizar a variabilidade espaçotemporal desse atributo em áreas de cana-de-açúcar, sob o sistema de cana crua no Sudeste do Estado de São Paulo.Carbon dioxide (CO2) is considered one of the main gases additional greenhouse effect and contributes significantly to global climate change. Agriculture areas offer an opportunity to mitigate this effect, since, depending on its use and handling, are capable of storing large amounts of carbon, removing them from the atmosphere. The CO2 production in soil is the result of biological processes such as the decomposition of organic matter and breathing roots and soil organisms, a phenomenon called soil CO2 emissions (FCO2). The aim of this study was to use artificial neural networks to study and forecast patterns spatiotemporal of soil CO2 emission in areas of sugarcane in raw cane system, mechanical harvesting, when large amounts of straw are deposited on soil surface. FCO2 values were collected in areas of commercial cultivation in southeastern of the state of São Paulo, registered through the LI-8100 system, sample grilles for determining the spatiotemporal variability of FCO2, and physical and chemical soil properties. The used data were from studies conducted in the years 2008, 2010 and 2012, in the period after the mechanical harvesting operation culture. A Multilayer Perceptron neural network with backpropagation algorithm was applied to estimate the emission of FCO2 in the year 2012, using data from the years 2008 and 2010 to the neural network training. The neural network initially presented a MAPE of 18.3852 and determination coefficient R2 of 0.9188. Data obtained from the observed FCO2 and FCO2 estimated present moderate spatial dependence, and observing the maps of the spatial pattern of the CO2 flow show that neural network presents considerable similarity to the observed data, identifying the higher and lower characteristic points of CO2 emissions. Therefore, the results indicate that the artificial neural network can provide reliability for the evaluation of FCO2 from data of physical and chemical soil properties, being able to describe the spatiotemporal variability of this attribute in sugarcane fields, under the crude cane system in the southeastern of the state of São Paulo.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 152199/2012-8Universidade Estadual Paulista (Unesp)Lotufo, Anna Diva Plasencia [UNESP]Universidade Estadual Paulista (Unesp)Freitas, Luciana Paro Scarin [UNESP]2016-09-15T19:48:07Z2016-09-15T19:48:07Z2016-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/14389400087184833004099080P0porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T17:57:40Zoai:repositorio.unesp.br:11449/143894Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:57:40Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
Forecast Variability of Soil CO2 emission in Cane Sugar Areas Using Artificial Neural Networks
title Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
spellingShingle Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
Freitas, Luciana Paro Scarin [UNESP]
Artificial neural networks
Forecasting models
Redes neurais artificiais
Variabilidade espacial
Modelos de previsão
Spatial variability
title_short Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
title_full Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
title_fullStr Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
title_full_unstemmed Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
title_sort Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais
author Freitas, Luciana Paro Scarin [UNESP]
author_facet Freitas, Luciana Paro Scarin [UNESP]
author_role author
dc.contributor.none.fl_str_mv Lotufo, Anna Diva Plasencia [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Freitas, Luciana Paro Scarin [UNESP]
dc.subject.por.fl_str_mv Artificial neural networks
Forecasting models
Redes neurais artificiais
Variabilidade espacial
Modelos de previsão
Spatial variability
topic Artificial neural networks
Forecasting models
Redes neurais artificiais
Variabilidade espacial
Modelos de previsão
Spatial variability
description O dióxido de carbono (CO2) é considerado um dos principais gases do efeito estufa adicional e contribui significativamente para as mudanças climáticas globais. Áreas agrícolas oferecem uma oportunidade para mitigar esse efeito, uma vez que, dependendo de seu uso e manejo, são capazes de armazenar grandes quantidades de carbono, retirando-as da atmosfera. A produção de CO2 no solo é resultado de processos biológicos, como a decomposição da matéria orgânica e respiração de raízes e organismos do solo, fenômeno chamado de emissão de CO2 do solo (FCO2). O objetivo deste trabalho foi utilizar as redes neurais artificiais para estudo e previsão de padrões espaço-temporais da emissão de CO2 do solo em áreas de cana-de-açúcar em sistema de cana crua, colheita mecanizada, quando grandes quantidades de palhas são depositadas sobre a superfície do solo. Valores de FCO2 foram coletados em áreas de cultivo comercial no Sudeste do Estado de São Paulo, registrados por meio do sistema LI-8100, em gradeados amostrais para determinação da variabilidade espaçotemporal de FCO2, e atributos físicos e químicos do solo. Foram utilizados dados referentes a estudos realizados nos anos de 2008, 2010 e 2012, no período após a operação de colheita mecânica da cultura. Uma rede neural Perceptron Multi-Camadas via algoritmo backpropagation foi aplicada para estimar a emissão de FCO2 do ano de 2012, utilizando os dados referentes aos anos de 2008 e 2010 para treinamento da rede neural. A rede neural inicialmente apresentou um MAPE de 18,3852 coeficiente de determinação R2 de 0,9188. Os dados obtidos do FCO2 observado e do FCO2 estimado apresentam moderada dependência espacial, e pelos mapas do padrão espacial do fluxo de CO2 é observado que a rede neural apresentou considerável similaridade com os dados observados, identificando os pontos característicos de maior emissão como também os de menor emissão de CO2. Portanto, os resultados indicam que a rede neural artificial pode fornecer estimativas com confiabilidade para a avaliação de FCO2 a partir de dados de atributos físicos e químicos do solo, sendo capaz de caracterizar a variabilidade espaçotemporal desse atributo em áreas de cana-de-açúcar, sob o sistema de cana crua no Sudeste do Estado de São Paulo.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-15T19:48:07Z
2016-09-15T19:48:07Z
2016-09-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/143894
000871848
33004099080P0
url http://hdl.handle.net/11449/143894
identifier_str_mv 000871848
33004099080P0
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128112462921728