Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal

Detalhes bibliográficos
Autor(a) principal: Paulo, Jean Vitor de
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/153829
Resumo: Neste trabalho avaliou-se a segmentação da coluna vertebral humana utilizando imagens externas da região dorsal. A avaliação foi realizada utilizando imagens de 70 pessoas (58 mulheres e 12 homens). Essas imagens foram agrupadas por meio da associação entre a quantidade de informação existente, dado pelo valor de entropia da imagem e uma avaliação qualitativa de visibilidade da musculatura paravertebral, realizada por três avaliadores. A segmentação foi feita utilizando um algoritmo, chamado DISLo (Dorsal Image Spine Locator), que processa imagens da região dorsal baseando-se na informação visível. Após o processamento, o algoritmo DISLo produz uma imagem binária contendo uma linha de pixels de intensidade 255 que representam a coluna vertebral identificada. Aplicando o algoritmo em todas as imagens, obteve-se uma segmentação de mais de 75% da coluna vertebral na maioria dos casos (40 imagens), e na minoria (4 imagens), menos de 25%. Posteriormente, para avaliar a qualidade da segmentação, utilizou-se o RMSD (Root Mean Square Deviation) calculado entre os pixels da segmentação automática do DISLo e outra realizada de modo manual, obtida da média de 9 avaliações realizadas por três avaliadores. Pôde-se verificar que as segmentações possuem uma exatidão maior em imagens com mais entropia, bem como possuem uma diferença no RMSD de +-2 pixels quando comparadas a imagens radiográficas. Portanto, a utilização de imagens externas da região dorsal para identificação da coluna vertebral é viável e apresenta uma maneira confiável para avaliação da mesma.
id UNSP_ad8de64f0677372722ca38c5216b5887
oai_identifier_str oai:repositorio.unesp.br:11449/153829
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsalSegmentation of the human spine through the processing of external images of the dorsal regionColuna vertebralProcessamento de imagensEntropiaRMSDSpineImage processingEntropyNeste trabalho avaliou-se a segmentação da coluna vertebral humana utilizando imagens externas da região dorsal. A avaliação foi realizada utilizando imagens de 70 pessoas (58 mulheres e 12 homens). Essas imagens foram agrupadas por meio da associação entre a quantidade de informação existente, dado pelo valor de entropia da imagem e uma avaliação qualitativa de visibilidade da musculatura paravertebral, realizada por três avaliadores. A segmentação foi feita utilizando um algoritmo, chamado DISLo (Dorsal Image Spine Locator), que processa imagens da região dorsal baseando-se na informação visível. Após o processamento, o algoritmo DISLo produz uma imagem binária contendo uma linha de pixels de intensidade 255 que representam a coluna vertebral identificada. Aplicando o algoritmo em todas as imagens, obteve-se uma segmentação de mais de 75% da coluna vertebral na maioria dos casos (40 imagens), e na minoria (4 imagens), menos de 25%. Posteriormente, para avaliar a qualidade da segmentação, utilizou-se o RMSD (Root Mean Square Deviation) calculado entre os pixels da segmentação automática do DISLo e outra realizada de modo manual, obtida da média de 9 avaliações realizadas por três avaliadores. Pôde-se verificar que as segmentações possuem uma exatidão maior em imagens com mais entropia, bem como possuem uma diferença no RMSD de +-2 pixels quando comparadas a imagens radiográficas. Portanto, a utilização de imagens externas da região dorsal para identificação da coluna vertebral é viável e apresenta uma maneira confiável para avaliação da mesma.In this work, the segmentation of the human vertebral column was evaluated using external images of the dorsal region. The evaluation was performed using 70 individual images (58 women and 12 men). These images were grouped using the association between the amount of existing information, given by the entropy value of the image, and a qualitative assessment of the paravertebral musculature visibility, performed by three evaluators. The segmentation was performed using an algorithm called DISLo (Dorsal Image Spine Locator) which processes images from the dorsal region, based on the visible information. After the processing, the DISLo algorithm produces a binary image containing a line with pixels having a 255 intensity value that represents the identified backbone. Applying the algorithm to all images resulted in a segmentation of more than 75% of the spine in most cases (40 images), and in the minority (4 images), less than 25%. Subsequently, to evaluate the quality of the segmentation, the RMSD (Root Mean Square Deviation) was calculated between the pixels of DISLo's automatic segmentation and a manual one, obtained from the average of 9 evaluations performed by three evaluators. It could be verified that the segmentations have a greater accuracy in images with more entropy as well as having a difference in the RMSD of +-2 pixels when compared to radiographic images. Therefore, the use of external images of the dorsal region for identification of the spine is viable, and a reliable method for its evaluation.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CNPq: 309193/2015-0Universidade Estadual Paulista (Unesp)Silva, Alexandre César Rodrigues da [UNESP]Universidade Estadual Paulista (Unesp)Paulo, Jean Vitor de2018-05-02T20:24:37Z2018-05-02T20:24:37Z2018-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/11449/15382900090113233004099080P0porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-05T17:57:43Zoai:repositorio.unesp.br:11449/153829Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:57:43Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
Segmentation of the human spine through the processing of external images of the dorsal region
title Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
spellingShingle Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
Paulo, Jean Vitor de
Coluna vertebral
Processamento de imagens
Entropia
RMSD
Spine
Image processing
Entropy
title_short Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
title_full Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
title_fullStr Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
title_full_unstemmed Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
title_sort Segmentação da coluna vertebral humana por meio do processamento de imagens externas da região dorsal
author Paulo, Jean Vitor de
author_facet Paulo, Jean Vitor de
author_role author
dc.contributor.none.fl_str_mv Silva, Alexandre César Rodrigues da [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Paulo, Jean Vitor de
dc.subject.por.fl_str_mv Coluna vertebral
Processamento de imagens
Entropia
RMSD
Spine
Image processing
Entropy
topic Coluna vertebral
Processamento de imagens
Entropia
RMSD
Spine
Image processing
Entropy
description Neste trabalho avaliou-se a segmentação da coluna vertebral humana utilizando imagens externas da região dorsal. A avaliação foi realizada utilizando imagens de 70 pessoas (58 mulheres e 12 homens). Essas imagens foram agrupadas por meio da associação entre a quantidade de informação existente, dado pelo valor de entropia da imagem e uma avaliação qualitativa de visibilidade da musculatura paravertebral, realizada por três avaliadores. A segmentação foi feita utilizando um algoritmo, chamado DISLo (Dorsal Image Spine Locator), que processa imagens da região dorsal baseando-se na informação visível. Após o processamento, o algoritmo DISLo produz uma imagem binária contendo uma linha de pixels de intensidade 255 que representam a coluna vertebral identificada. Aplicando o algoritmo em todas as imagens, obteve-se uma segmentação de mais de 75% da coluna vertebral na maioria dos casos (40 imagens), e na minoria (4 imagens), menos de 25%. Posteriormente, para avaliar a qualidade da segmentação, utilizou-se o RMSD (Root Mean Square Deviation) calculado entre os pixels da segmentação automática do DISLo e outra realizada de modo manual, obtida da média de 9 avaliações realizadas por três avaliadores. Pôde-se verificar que as segmentações possuem uma exatidão maior em imagens com mais entropia, bem como possuem uma diferença no RMSD de +-2 pixels quando comparadas a imagens radiográficas. Portanto, a utilização de imagens externas da região dorsal para identificação da coluna vertebral é viável e apresenta uma maneira confiável para avaliação da mesma.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-02T20:24:37Z
2018-05-02T20:24:37Z
2018-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/153829
000901132
33004099080P0
url http://hdl.handle.net/11449/153829
identifier_str_mv 000901132
33004099080P0
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128126012620800