Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.ssc.2010.10.034 http://hdl.handle.net/11449/72251 |
Resumo: | In the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved. |
id |
UNSP_ae345317877ad708baa3390bedfbffe5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72251 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compoundsA. CCTOC. Stacking faultsD. Dielectric relaxationD. NBLC modelBarrier layersDielectric permittivitiesDipolar relaxationElectronic conductionHigh frequencyNano-sizedNanoscale effectsPolaronic featuresRelaxation frequencySpectroscopy measurementsActivation energyDielectric devicesDielectric lossesDielectric relaxationElectron energy loss spectroscopyStacking faultsDielectric materialsIn the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.Universidade Estadual Paulista Instituto de Química Departamento de Físico-Química, P.O. Box 355, 14800-900, Araraquara, Soã PauloUniversidade Estadual Paulista Instituto de Química Departamento de Físico-Química, P.O. Box 355, 14800-900, Araraquara, Soã PauloUniversidade Estadual Paulista (Unesp)Ribeiro, Willian C. [UNESP]Joanni, Ednan [UNESP]Savu, Raluca [UNESP]Bueno, Paulo Roberto [UNESP]2014-05-27T11:25:26Z2014-05-27T11:25:26Z2011-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article173-176application/pdfhttp://dx.doi.org/10.1016/j.ssc.2010.10.034Solid State Communications, v. 151, n. 2, p. 173-176, 2011.0038-1098http://hdl.handle.net/11449/7225110.1016/j.ssc.2010.10.0342-s2.0-786505125862-s2.0-78650512586.pdf04770459067332540000-0003-2827-0208Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSolid State Communications1.5490,535info:eu-repo/semantics/openAccess2023-12-14T06:17:48Zoai:repositorio.unesp.br:11449/72251Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:17:03.693744Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds |
title |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds |
spellingShingle |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds Ribeiro, Willian C. [UNESP] A. CCTO C. Stacking faults D. Dielectric relaxation D. NBLC model Barrier layers Dielectric permittivities Dipolar relaxation Electronic conduction High frequency Nano-sized Nanoscale effects Polaronic features Relaxation frequency Spectroscopy measurements Activation energy Dielectric devices Dielectric losses Dielectric relaxation Electron energy loss spectroscopy Stacking faults Dielectric materials |
title_short |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds |
title_full |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds |
title_fullStr |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds |
title_full_unstemmed |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds |
title_sort |
Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds |
author |
Ribeiro, Willian C. [UNESP] |
author_facet |
Ribeiro, Willian C. [UNESP] Joanni, Ednan [UNESP] Savu, Raluca [UNESP] Bueno, Paulo Roberto [UNESP] |
author_role |
author |
author2 |
Joanni, Ednan [UNESP] Savu, Raluca [UNESP] Bueno, Paulo Roberto [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Ribeiro, Willian C. [UNESP] Joanni, Ednan [UNESP] Savu, Raluca [UNESP] Bueno, Paulo Roberto [UNESP] |
dc.subject.por.fl_str_mv |
A. CCTO C. Stacking faults D. Dielectric relaxation D. NBLC model Barrier layers Dielectric permittivities Dipolar relaxation Electronic conduction High frequency Nano-sized Nanoscale effects Polaronic features Relaxation frequency Spectroscopy measurements Activation energy Dielectric devices Dielectric losses Dielectric relaxation Electron energy loss spectroscopy Stacking faults Dielectric materials |
topic |
A. CCTO C. Stacking faults D. Dielectric relaxation D. NBLC model Barrier layers Dielectric permittivities Dipolar relaxation Electronic conduction High frequency Nano-sized Nanoscale effects Polaronic features Relaxation frequency Spectroscopy measurements Activation energy Dielectric devices Dielectric losses Dielectric relaxation Electron energy loss spectroscopy Stacking faults Dielectric materials |
description |
In the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01 2014-05-27T11:25:26Z 2014-05-27T11:25:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.ssc.2010.10.034 Solid State Communications, v. 151, n. 2, p. 173-176, 2011. 0038-1098 http://hdl.handle.net/11449/72251 10.1016/j.ssc.2010.10.034 2-s2.0-78650512586 2-s2.0-78650512586.pdf 0477045906733254 0000-0003-2827-0208 |
url |
http://dx.doi.org/10.1016/j.ssc.2010.10.034 http://hdl.handle.net/11449/72251 |
identifier_str_mv |
Solid State Communications, v. 151, n. 2, p. 173-176, 2011. 0038-1098 10.1016/j.ssc.2010.10.034 2-s2.0-78650512586 2-s2.0-78650512586.pdf 0477045906733254 0000-0003-2827-0208 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Solid State Communications 1.549 0,535 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
173-176 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129183372541952 |