Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Willian C. [UNESP]
Data de Publicação: 2011
Outros Autores: Joanni, Ednan [UNESP], Savu, Raluca [UNESP], Bueno, Paulo Roberto [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ssc.2010.10.034
http://hdl.handle.net/11449/72251
Resumo: In the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.
id UNSP_ae345317877ad708baa3390bedfbffe5
oai_identifier_str oai:repositorio.unesp.br:11449/72251
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compoundsA. CCTOC. Stacking faultsD. Dielectric relaxationD. NBLC modelBarrier layersDielectric permittivitiesDipolar relaxationElectronic conductionHigh frequencyNano-sizedNanoscale effectsPolaronic featuresRelaxation frequencySpectroscopy measurementsActivation energyDielectric devicesDielectric lossesDielectric relaxationElectron energy loss spectroscopyStacking faultsDielectric materialsIn the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.Universidade Estadual Paulista Instituto de Química Departamento de Físico-Química, P.O. Box 355, 14800-900, Araraquara, Soã PauloUniversidade Estadual Paulista Instituto de Química Departamento de Físico-Química, P.O. Box 355, 14800-900, Araraquara, Soã PauloUniversidade Estadual Paulista (Unesp)Ribeiro, Willian C. [UNESP]Joanni, Ednan [UNESP]Savu, Raluca [UNESP]Bueno, Paulo Roberto [UNESP]2014-05-27T11:25:26Z2014-05-27T11:25:26Z2011-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article173-176application/pdfhttp://dx.doi.org/10.1016/j.ssc.2010.10.034Solid State Communications, v. 151, n. 2, p. 173-176, 2011.0038-1098http://hdl.handle.net/11449/7225110.1016/j.ssc.2010.10.0342-s2.0-786505125862-s2.0-78650512586.pdf04770459067332540000-0003-2827-0208Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSolid State Communications1.5490,535info:eu-repo/semantics/openAccess2023-12-14T06:17:48Zoai:repositorio.unesp.br:11449/72251Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:17:03.693744Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
title Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
spellingShingle Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
Ribeiro, Willian C. [UNESP]
A. CCTO
C. Stacking faults
D. Dielectric relaxation
D. NBLC model
Barrier layers
Dielectric permittivities
Dipolar relaxation
Electronic conduction
High frequency
Nano-sized
Nanoscale effects
Polaronic features
Relaxation frequency
Spectroscopy measurements
Activation energy
Dielectric devices
Dielectric losses
Dielectric relaxation
Electron energy loss spectroscopy
Stacking faults
Dielectric materials
title_short Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
title_full Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
title_fullStr Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
title_full_unstemmed Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
title_sort Nanoscale effects and polaronic relaxation in CaCu3Ti 4O12 compounds
author Ribeiro, Willian C. [UNESP]
author_facet Ribeiro, Willian C. [UNESP]
Joanni, Ednan [UNESP]
Savu, Raluca [UNESP]
Bueno, Paulo Roberto [UNESP]
author_role author
author2 Joanni, Ednan [UNESP]
Savu, Raluca [UNESP]
Bueno, Paulo Roberto [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ribeiro, Willian C. [UNESP]
Joanni, Ednan [UNESP]
Savu, Raluca [UNESP]
Bueno, Paulo Roberto [UNESP]
dc.subject.por.fl_str_mv A. CCTO
C. Stacking faults
D. Dielectric relaxation
D. NBLC model
Barrier layers
Dielectric permittivities
Dipolar relaxation
Electronic conduction
High frequency
Nano-sized
Nanoscale effects
Polaronic features
Relaxation frequency
Spectroscopy measurements
Activation energy
Dielectric devices
Dielectric losses
Dielectric relaxation
Electron energy loss spectroscopy
Stacking faults
Dielectric materials
topic A. CCTO
C. Stacking faults
D. Dielectric relaxation
D. NBLC model
Barrier layers
Dielectric permittivities
Dipolar relaxation
Electronic conduction
High frequency
Nano-sized
Nanoscale effects
Polaronic features
Relaxation frequency
Spectroscopy measurements
Activation energy
Dielectric devices
Dielectric losses
Dielectric relaxation
Electron energy loss spectroscopy
Stacking faults
Dielectric materials
description In the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01
2014-05-27T11:25:26Z
2014-05-27T11:25:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ssc.2010.10.034
Solid State Communications, v. 151, n. 2, p. 173-176, 2011.
0038-1098
http://hdl.handle.net/11449/72251
10.1016/j.ssc.2010.10.034
2-s2.0-78650512586
2-s2.0-78650512586.pdf
0477045906733254
0000-0003-2827-0208
url http://dx.doi.org/10.1016/j.ssc.2010.10.034
http://hdl.handle.net/11449/72251
identifier_str_mv Solid State Communications, v. 151, n. 2, p. 173-176, 2011.
0038-1098
10.1016/j.ssc.2010.10.034
2-s2.0-78650512586
2-s2.0-78650512586.pdf
0477045906733254
0000-0003-2827-0208
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Solid State Communications
1.549
0,535
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 173-176
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129183372541952