Bekenstein bound in asymptotically free field theory

Detalhes bibliográficos
Autor(a) principal: Arias, E.
Data de Publicação: 2010
Outros Autores: Svaiter, N. F., Menezes, G. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevD.82.045001
http://hdl.handle.net/11449/226041
Resumo: For spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the inequality SE≤2πR, where R stands for the radius of the smallest sphere that circumscribes the system. The validity of the Bekenstein bound in the asymptotically free side of the Euclidean (λφ4)d scalar field theory is investigated. We consider the system in thermal equilibrium with a reservoir at temperature β-1 and defined in a compact spatial region without boundaries. Using the effective potential, we discuss the thermodynamic of the model. For low and high temperatures the system presents a condensate. We present the renormalized mean energy E and entropy S for the system and show in which situations the specific entropy satisfies the quantum bound. © 2010 The American Physical Society.
id UNSP_af2054269617bab84f1df05337f373a1
oai_identifier_str oai:repositorio.unesp.br:11449/226041
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bekenstein bound in asymptotically free field theoryFor spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the inequality SE≤2πR, where R stands for the radius of the smallest sphere that circumscribes the system. The validity of the Bekenstein bound in the asymptotically free side of the Euclidean (λφ4)d scalar field theory is investigated. We consider the system in thermal equilibrium with a reservoir at temperature β-1 and defined in a compact spatial region without boundaries. Using the effective potential, we discuss the thermodynamic of the model. For low and high temperatures the system presents a condensate. We present the renormalized mean energy E and entropy S for the system and show in which situations the specific entropy satisfies the quantum bound. © 2010 The American Physical Society.Centro Brasileiro de Pesquisas Físicas-CBPF, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180Instituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Barra Funda, São Paulo, SP, 01140-070Instituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Barra Funda, São Paulo, SP, 01140-070Centro Brasileiro de Pesquisas Físicas-CBPFUniversidade Estadual Paulista (UNESP)Arias, E.Svaiter, N. F.Menezes, G. [UNESP]2022-04-28T21:25:04Z2022-04-28T21:25:04Z2010-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevD.82.045001Physical Review D - Particles, Fields, Gravitation and Cosmology, v. 82, n. 4, 2010.1550-79981550-2368http://hdl.handle.net/11449/22604110.1103/PhysRevD.82.0450012-s2.0-77956894299Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review D - Particles, Fields, Gravitation and Cosmologyinfo:eu-repo/semantics/openAccess2022-04-28T21:25:04Zoai:repositorio.unesp.br:11449/226041Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:06:01.369978Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bekenstein bound in asymptotically free field theory
title Bekenstein bound in asymptotically free field theory
spellingShingle Bekenstein bound in asymptotically free field theory
Arias, E.
title_short Bekenstein bound in asymptotically free field theory
title_full Bekenstein bound in asymptotically free field theory
title_fullStr Bekenstein bound in asymptotically free field theory
title_full_unstemmed Bekenstein bound in asymptotically free field theory
title_sort Bekenstein bound in asymptotically free field theory
author Arias, E.
author_facet Arias, E.
Svaiter, N. F.
Menezes, G. [UNESP]
author_role author
author2 Svaiter, N. F.
Menezes, G. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Centro Brasileiro de Pesquisas Físicas-CBPF
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Arias, E.
Svaiter, N. F.
Menezes, G. [UNESP]
description For spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the inequality SE≤2πR, where R stands for the radius of the smallest sphere that circumscribes the system. The validity of the Bekenstein bound in the asymptotically free side of the Euclidean (λφ4)d scalar field theory is investigated. We consider the system in thermal equilibrium with a reservoir at temperature β-1 and defined in a compact spatial region without boundaries. Using the effective potential, we discuss the thermodynamic of the model. For low and high temperatures the system presents a condensate. We present the renormalized mean energy E and entropy S for the system and show in which situations the specific entropy satisfies the quantum bound. © 2010 The American Physical Society.
publishDate 2010
dc.date.none.fl_str_mv 2010-08-03
2022-04-28T21:25:04Z
2022-04-28T21:25:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevD.82.045001
Physical Review D - Particles, Fields, Gravitation and Cosmology, v. 82, n. 4, 2010.
1550-7998
1550-2368
http://hdl.handle.net/11449/226041
10.1103/PhysRevD.82.045001
2-s2.0-77956894299
url http://dx.doi.org/10.1103/PhysRevD.82.045001
http://hdl.handle.net/11449/226041
identifier_str_mv Physical Review D - Particles, Fields, Gravitation and Cosmology, v. 82, n. 4, 2010.
1550-7998
1550-2368
10.1103/PhysRevD.82.045001
2-s2.0-77956894299
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review D - Particles, Fields, Gravitation and Cosmology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129490224676864