New developments for lignocellulosics-nanocomposites with low carbon footprint

Detalhes bibliográficos
Autor(a) principal: Leao, Alcides L. [UNESP]
Data de Publicação: 2012
Outros Autores: Cherian, Bibin M. [UNESP], Souza, Sivoney F., Sain, Mohini, Narine, Suresh
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1557/opl.2012.326
http://hdl.handle.net/11449/73862
Resumo: Cellulose nanofibrils have been evaluated as reinforcement material in polymeric matrixes due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes as well as its environmental positive footprint. This work describes how banana nanocellulose can be used to replace others not so friendly materials in many applications including, biomaterials, automotive industries and packaging by proved with their mechanical properties. The process used is very mild to the environment and consists of a high pressure fibrillation followed by a chemical purification which affects the fiber morphology. Many fibers characterization processes were used including microscopy techniques and X-ray diffraction to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of the fibers. © 2012 Materials Research Society.
id UNSP_af31f599a3399caf967189e9691963d4
oai_identifier_str oai:repositorio.unesp.br:11449/73862
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling New developments for lignocellulosics-nanocomposites with low carbon footprintCellulose nanofibrilsChemical purificationFiber morphologyMicroscopy techniquePolymeric matrixReinforcement materialsStructure and propertiesUnique morphologiesAutomotive industryBiological materialsBiomaterialsCarbon footprintDielectric propertiesMechanical propertiesMorphologyX ray diffractionPackaging materialsAnatomyCarbonDielectric PropertiesMechanical PropertiesPackaging MaterialsX Ray DiffractionCellulose nanofibrils have been evaluated as reinforcement material in polymeric matrixes due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes as well as its environmental positive footprint. This work describes how banana nanocellulose can be used to replace others not so friendly materials in many applications including, biomaterials, automotive industries and packaging by proved with their mechanical properties. The process used is very mild to the environment and consists of a high pressure fibrillation followed by a chemical purification which affects the fiber morphology. Many fibers characterization processes were used including microscopy techniques and X-ray diffraction to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of the fibers. © 2012 Materials Research Society.UNESP Sao Paulo State UniversityUFABC Federal University of ABCU. of T. University of TorontoTrent University, PeterboroughUNESP Sao Paulo State UniversityUniversidade Estadual Paulista (Unesp)Universidade Federal do ABC (UFABC)University of TorontoTrent UniversityLeao, Alcides L. [UNESP]Cherian, Bibin M. [UNESP]Souza, Sivoney F.Sain, MohiniNarine, Suresh2014-05-27T11:27:20Z2014-05-27T11:27:20Z2012-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject38-43http://dx.doi.org/10.1557/opl.2012.326Materials Research Society Symposium Proceedings, v. 1386, p. 38-43.0272-9172http://hdl.handle.net/11449/7386210.1557/opl.2012.3262-s2.0-84879479606Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMaterials Research Society Symposium Proceedings0,139info:eu-repo/semantics/openAccess2021-10-23T21:41:38Zoai:repositorio.unesp.br:11449/73862Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:53:45.897206Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv New developments for lignocellulosics-nanocomposites with low carbon footprint
title New developments for lignocellulosics-nanocomposites with low carbon footprint
spellingShingle New developments for lignocellulosics-nanocomposites with low carbon footprint
Leao, Alcides L. [UNESP]
Cellulose nanofibrils
Chemical purification
Fiber morphology
Microscopy technique
Polymeric matrix
Reinforcement materials
Structure and properties
Unique morphologies
Automotive industry
Biological materials
Biomaterials
Carbon footprint
Dielectric properties
Mechanical properties
Morphology
X ray diffraction
Packaging materials
Anatomy
Carbon
Dielectric Properties
Mechanical Properties
Packaging Materials
X Ray Diffraction
title_short New developments for lignocellulosics-nanocomposites with low carbon footprint
title_full New developments for lignocellulosics-nanocomposites with low carbon footprint
title_fullStr New developments for lignocellulosics-nanocomposites with low carbon footprint
title_full_unstemmed New developments for lignocellulosics-nanocomposites with low carbon footprint
title_sort New developments for lignocellulosics-nanocomposites with low carbon footprint
author Leao, Alcides L. [UNESP]
author_facet Leao, Alcides L. [UNESP]
Cherian, Bibin M. [UNESP]
Souza, Sivoney F.
Sain, Mohini
Narine, Suresh
author_role author
author2 Cherian, Bibin M. [UNESP]
Souza, Sivoney F.
Sain, Mohini
Narine, Suresh
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal do ABC (UFABC)
University of Toronto
Trent University
dc.contributor.author.fl_str_mv Leao, Alcides L. [UNESP]
Cherian, Bibin M. [UNESP]
Souza, Sivoney F.
Sain, Mohini
Narine, Suresh
dc.subject.por.fl_str_mv Cellulose nanofibrils
Chemical purification
Fiber morphology
Microscopy technique
Polymeric matrix
Reinforcement materials
Structure and properties
Unique morphologies
Automotive industry
Biological materials
Biomaterials
Carbon footprint
Dielectric properties
Mechanical properties
Morphology
X ray diffraction
Packaging materials
Anatomy
Carbon
Dielectric Properties
Mechanical Properties
Packaging Materials
X Ray Diffraction
topic Cellulose nanofibrils
Chemical purification
Fiber morphology
Microscopy technique
Polymeric matrix
Reinforcement materials
Structure and properties
Unique morphologies
Automotive industry
Biological materials
Biomaterials
Carbon footprint
Dielectric properties
Mechanical properties
Morphology
X ray diffraction
Packaging materials
Anatomy
Carbon
Dielectric Properties
Mechanical Properties
Packaging Materials
X Ray Diffraction
description Cellulose nanofibrils have been evaluated as reinforcement material in polymeric matrixes due to their potential to improve the mechanical, optical, and dielectric properties of these matrixes as well as its environmental positive footprint. This work describes how banana nanocellulose can be used to replace others not so friendly materials in many applications including, biomaterials, automotive industries and packaging by proved with their mechanical properties. The process used is very mild to the environment and consists of a high pressure fibrillation followed by a chemical purification which affects the fiber morphology. Many fibers characterization processes were used including microscopy techniques and X-ray diffraction to study the structure and properties of the prepared nanofibers and composites. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of the fibers. © 2012 Materials Research Society.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-01
2014-05-27T11:27:20Z
2014-05-27T11:27:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1557/opl.2012.326
Materials Research Society Symposium Proceedings, v. 1386, p. 38-43.
0272-9172
http://hdl.handle.net/11449/73862
10.1557/opl.2012.326
2-s2.0-84879479606
url http://dx.doi.org/10.1557/opl.2012.326
http://hdl.handle.net/11449/73862
identifier_str_mv Materials Research Society Symposium Proceedings, v. 1386, p. 38-43.
0272-9172
10.1557/opl.2012.326
2-s2.0-84879479606
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Materials Research Society Symposium Proceedings
0,139
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 38-43
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129471086067712