Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater

Detalhes bibliográficos
Autor(a) principal: Silva, Felipe A. S. da [UNESP]
Data de Publicação: 2019
Outros Autores: Dezan, Daniel J., Pantaleao, Aluisio V. [UNESP], Salviano, Leandro O. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.applthermaleng.2019.113790
http://hdl.handle.net/11449/185886
Resumo: The population growth and industrial development increase the demand for energy and the solar energy conversion is an important alternative to complement the world energy matrix. Flat plate solar collectors are devices that convert the solar energy into thermal energy and store the thermal energy in a working fluid, which could reduce the required electricity to heat water. However, an increase in the heat transfer in this type of equipment remains a great challenge. In the current research, two types of longitudinal vortex generators are placed into circular tube of a solar collector in order to enhance the heat transfer between tube walls and working fluid. The numerical modeling is performed by ANSYS 18.0 software and the flow pattern and heat transfer characteristics are analyzed in details for two types of vortex generators (delta-winglet and rectangular-winglet), Reynolds number of 300, 600 and 900, and angle of attack of 15 degrees, 30 degrees and 45 degrees. Ten vortex generators were uniformly arranged on a flat-plate inside the tube. The results show that the delta-winglet and rectangular-winglet longitudinal vortex generators are in fact a passive technique capable to enhance the heat transfer in a solar water heater. The highest heat transfer is obtained for attack of the angle of 45 degrees for both vortex generators, which is more pronounced for the rectangular-winglet vortex generator. However, the best ratio between the heat transfer and the pressure drop penalty is achieved for the delta-winglet vortex generator for angle of attack of 30 degrees. The secondary flow is successfully generated by the inserts, although the corner vortex is observed only by rectangular-winglet vortex generator. Finally, the first vortex generator only impacts on the friction factor and can be removed with no significant losses on the heat transfer.
id UNSP_b0067913ad234cb70eb7ea7023bef805
oai_identifier_str oai:repositorio.unesp.br:11449/185886
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heaterSolar water collectorSolar energyHeat transfer enhancementLongitudinal vortex generatorThe population growth and industrial development increase the demand for energy and the solar energy conversion is an important alternative to complement the world energy matrix. Flat plate solar collectors are devices that convert the solar energy into thermal energy and store the thermal energy in a working fluid, which could reduce the required electricity to heat water. However, an increase in the heat transfer in this type of equipment remains a great challenge. In the current research, two types of longitudinal vortex generators are placed into circular tube of a solar collector in order to enhance the heat transfer between tube walls and working fluid. The numerical modeling is performed by ANSYS 18.0 software and the flow pattern and heat transfer characteristics are analyzed in details for two types of vortex generators (delta-winglet and rectangular-winglet), Reynolds number of 300, 600 and 900, and angle of attack of 15 degrees, 30 degrees and 45 degrees. Ten vortex generators were uniformly arranged on a flat-plate inside the tube. The results show that the delta-winglet and rectangular-winglet longitudinal vortex generators are in fact a passive technique capable to enhance the heat transfer in a solar water heater. The highest heat transfer is obtained for attack of the angle of 45 degrees for both vortex generators, which is more pronounced for the rectangular-winglet vortex generator. However, the best ratio between the heat transfer and the pressure drop penalty is achieved for the delta-winglet vortex generator for angle of attack of 30 degrees. The secondary flow is successfully generated by the inserts, although the corner vortex is observed only by rectangular-winglet vortex generator. Finally, the first vortex generator only impacts on the friction factor and can be removed with no significant losses on the heat transfer.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Energy Engn, Av Barrageiros 1881, BR-19274000 Rosana, SP, BrazilSao Paulo State Univ, Dept Mech Engn, Av Brasil 56, BR-15385000 Ilha Solteira, SP, BrazilFed Univ ABC, Energy Engn, Av Estados 5001, BR-09210580 Santo Andre, SP, BrazilSao Paulo State Univ, Energy Engn, Av Barrageiros 1881, BR-19274000 Rosana, SP, BrazilSao Paulo State Univ, Dept Mech Engn, Av Brasil 56, BR-15385000 Ilha Solteira, SP, BrazilFAPESP: 2017/00608-0FAPESP: 2016/14620-9Elsevier B.V.Universidade Estadual Paulista (Unesp)Fed Univ ABCSilva, Felipe A. S. da [UNESP]Dezan, Daniel J.Pantaleao, Aluisio V. [UNESP]Salviano, Leandro O. [UNESP]2019-10-04T12:39:31Z2019-10-04T12:39:31Z2019-07-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10http://dx.doi.org/10.1016/j.applthermaleng.2019.113790Applied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 158, 10 p., 2019.1359-4311http://hdl.handle.net/11449/18588610.1016/j.applthermaleng.2019.113790WOS:000474673800038Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Thermal Engineeringinfo:eu-repo/semantics/openAccess2021-10-23T15:54:55Zoai:repositorio.unesp.br:11449/185886Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462021-10-23T15:54:55Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
title Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
spellingShingle Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
Silva, Felipe A. S. da [UNESP]
Solar water collector
Solar energy
Heat transfer enhancement
Longitudinal vortex generator
title_short Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
title_full Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
title_fullStr Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
title_full_unstemmed Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
title_sort Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater
author Silva, Felipe A. S. da [UNESP]
author_facet Silva, Felipe A. S. da [UNESP]
Dezan, Daniel J.
Pantaleao, Aluisio V. [UNESP]
Salviano, Leandro O. [UNESP]
author_role author
author2 Dezan, Daniel J.
Pantaleao, Aluisio V. [UNESP]
Salviano, Leandro O. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Fed Univ ABC
dc.contributor.author.fl_str_mv Silva, Felipe A. S. da [UNESP]
Dezan, Daniel J.
Pantaleao, Aluisio V. [UNESP]
Salviano, Leandro O. [UNESP]
dc.subject.por.fl_str_mv Solar water collector
Solar energy
Heat transfer enhancement
Longitudinal vortex generator
topic Solar water collector
Solar energy
Heat transfer enhancement
Longitudinal vortex generator
description The population growth and industrial development increase the demand for energy and the solar energy conversion is an important alternative to complement the world energy matrix. Flat plate solar collectors are devices that convert the solar energy into thermal energy and store the thermal energy in a working fluid, which could reduce the required electricity to heat water. However, an increase in the heat transfer in this type of equipment remains a great challenge. In the current research, two types of longitudinal vortex generators are placed into circular tube of a solar collector in order to enhance the heat transfer between tube walls and working fluid. The numerical modeling is performed by ANSYS 18.0 software and the flow pattern and heat transfer characteristics are analyzed in details for two types of vortex generators (delta-winglet and rectangular-winglet), Reynolds number of 300, 600 and 900, and angle of attack of 15 degrees, 30 degrees and 45 degrees. Ten vortex generators were uniformly arranged on a flat-plate inside the tube. The results show that the delta-winglet and rectangular-winglet longitudinal vortex generators are in fact a passive technique capable to enhance the heat transfer in a solar water heater. The highest heat transfer is obtained for attack of the angle of 45 degrees for both vortex generators, which is more pronounced for the rectangular-winglet vortex generator. However, the best ratio between the heat transfer and the pressure drop penalty is achieved for the delta-winglet vortex generator for angle of attack of 30 degrees. The secondary flow is successfully generated by the inserts, although the corner vortex is observed only by rectangular-winglet vortex generator. Finally, the first vortex generator only impacts on the friction factor and can be removed with no significant losses on the heat transfer.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T12:39:31Z
2019-10-04T12:39:31Z
2019-07-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.applthermaleng.2019.113790
Applied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 158, 10 p., 2019.
1359-4311
http://hdl.handle.net/11449/185886
10.1016/j.applthermaleng.2019.113790
WOS:000474673800038
url http://dx.doi.org/10.1016/j.applthermaleng.2019.113790
http://hdl.handle.net/11449/185886
identifier_str_mv Applied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 158, 10 p., 2019.
1359-4311
10.1016/j.applthermaleng.2019.113790
WOS:000474673800038
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Thermal Engineering
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803047351760191488