First-order swap structures semantics for some logics of formal inconsistency
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1093/logcom/exaa027 http://hdl.handle.net/11449/208958 |
Resumo: | The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered. |
id |
UNSP_b09f9eecf16ba5ef2e8135cd88825203 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/208958 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
First-order swap structures semantics for some logics of formal inconsistencyFirst-order logicslogics of formal inconsistencyparaconsistent logicsswap structuresnon-deterministic matricestwist structuresThe logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Campinas, Inst Philosophy & Humanities, BR-13083896 Campinas, SP, BrazilUniv Estadual Campinas, Ctr Log Epistemol & Hist Sci, BR-13083896 Campinas, SP, BrazilUniv Nacl Sur, Dept Matemat, Bahia Blanca, Buenos Aires, ArgentinaSao Paulo State Univ, Fac Philosophy & Sci, Marilia Campus, BR-17525900 Sao Paulo, SP, BrazilSao Paulo State Univ, Fac Philosophy & Sci, Marilia Campus, BR-17525900 Sao Paulo, SP, BrazilCNPq: 308524/2014-4CNPq: 150064/2018-7FAPESP: 2016/21928-0FAPESP: 2019/08442-9Oxford Univ PressUniversidade Estadual de Campinas (UNICAMP)Univ Nacl SurUniversidade Estadual Paulista (Unesp)Coniglio, Marcelo E.Figallo-Orellano, AldoGolzio, Ana C. [UNESP]2021-06-25T11:44:17Z2021-06-25T11:44:17Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1257-1290http://dx.doi.org/10.1093/logcom/exaa027Journal Of Logic And Computation. Oxford: Oxford Univ Press, v. 30, n. 6, p. 1257-1290, 2020.0955-792Xhttp://hdl.handle.net/11449/20895810.1093/logcom/exaa027WOS:000593083900004Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Logic And Computationinfo:eu-repo/semantics/openAccess2021-10-23T19:23:25Zoai:repositorio.unesp.br:11449/208958Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:44:15.584839Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
First-order swap structures semantics for some logics of formal inconsistency |
title |
First-order swap structures semantics for some logics of formal inconsistency |
spellingShingle |
First-order swap structures semantics for some logics of formal inconsistency Coniglio, Marcelo E. First-order logics logics of formal inconsistency paraconsistent logics swap structures non-deterministic matrices twist structures |
title_short |
First-order swap structures semantics for some logics of formal inconsistency |
title_full |
First-order swap structures semantics for some logics of formal inconsistency |
title_fullStr |
First-order swap structures semantics for some logics of formal inconsistency |
title_full_unstemmed |
First-order swap structures semantics for some logics of formal inconsistency |
title_sort |
First-order swap structures semantics for some logics of formal inconsistency |
author |
Coniglio, Marcelo E. |
author_facet |
Coniglio, Marcelo E. Figallo-Orellano, Aldo Golzio, Ana C. [UNESP] |
author_role |
author |
author2 |
Figallo-Orellano, Aldo Golzio, Ana C. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Univ Nacl Sur Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Coniglio, Marcelo E. Figallo-Orellano, Aldo Golzio, Ana C. [UNESP] |
dc.subject.por.fl_str_mv |
First-order logics logics of formal inconsistency paraconsistent logics swap structures non-deterministic matrices twist structures |
topic |
First-order logics logics of formal inconsistency paraconsistent logics swap structures non-deterministic matrices twist structures |
description |
The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-01 2021-06-25T11:44:17Z 2021-06-25T11:44:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1093/logcom/exaa027 Journal Of Logic And Computation. Oxford: Oxford Univ Press, v. 30, n. 6, p. 1257-1290, 2020. 0955-792X http://hdl.handle.net/11449/208958 10.1093/logcom/exaa027 WOS:000593083900004 |
url |
http://dx.doi.org/10.1093/logcom/exaa027 http://hdl.handle.net/11449/208958 |
identifier_str_mv |
Journal Of Logic And Computation. Oxford: Oxford Univ Press, v. 30, n. 6, p. 1257-1290, 2020. 0955-792X 10.1093/logcom/exaa027 WOS:000593083900004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal Of Logic And Computation |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1257-1290 |
dc.publisher.none.fl_str_mv |
Oxford Univ Press |
publisher.none.fl_str_mv |
Oxford Univ Press |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129240357404672 |