First-order swap structures semantics for some logics of formal inconsistency

Detalhes bibliográficos
Autor(a) principal: Coniglio, Marcelo E.
Data de Publicação: 2020
Outros Autores: Figallo-Orellano, Aldo, Golzio, Ana C. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1093/logcom/exaa027
http://hdl.handle.net/11449/208958
Resumo: The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered.
id UNSP_b09f9eecf16ba5ef2e8135cd88825203
oai_identifier_str oai:repositorio.unesp.br:11449/208958
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling First-order swap structures semantics for some logics of formal inconsistencyFirst-order logicslogics of formal inconsistencyparaconsistent logicsswap structuresnon-deterministic matricestwist structuresThe logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Campinas, Inst Philosophy & Humanities, BR-13083896 Campinas, SP, BrazilUniv Estadual Campinas, Ctr Log Epistemol & Hist Sci, BR-13083896 Campinas, SP, BrazilUniv Nacl Sur, Dept Matemat, Bahia Blanca, Buenos Aires, ArgentinaSao Paulo State Univ, Fac Philosophy & Sci, Marilia Campus, BR-17525900 Sao Paulo, SP, BrazilSao Paulo State Univ, Fac Philosophy & Sci, Marilia Campus, BR-17525900 Sao Paulo, SP, BrazilCNPq: 308524/2014-4CNPq: 150064/2018-7FAPESP: 2016/21928-0FAPESP: 2019/08442-9Oxford Univ PressUniversidade Estadual de Campinas (UNICAMP)Univ Nacl SurUniversidade Estadual Paulista (Unesp)Coniglio, Marcelo E.Figallo-Orellano, AldoGolzio, Ana C. [UNESP]2021-06-25T11:44:17Z2021-06-25T11:44:17Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1257-1290http://dx.doi.org/10.1093/logcom/exaa027Journal Of Logic And Computation. Oxford: Oxford Univ Press, v. 30, n. 6, p. 1257-1290, 2020.0955-792Xhttp://hdl.handle.net/11449/20895810.1093/logcom/exaa027WOS:000593083900004Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Logic And Computationinfo:eu-repo/semantics/openAccess2021-10-23T19:23:25Zoai:repositorio.unesp.br:11449/208958Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:44:15.584839Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv First-order swap structures semantics for some logics of formal inconsistency
title First-order swap structures semantics for some logics of formal inconsistency
spellingShingle First-order swap structures semantics for some logics of formal inconsistency
Coniglio, Marcelo E.
First-order logics
logics of formal inconsistency
paraconsistent logics
swap structures
non-deterministic matrices
twist structures
title_short First-order swap structures semantics for some logics of formal inconsistency
title_full First-order swap structures semantics for some logics of formal inconsistency
title_fullStr First-order swap structures semantics for some logics of formal inconsistency
title_full_unstemmed First-order swap structures semantics for some logics of formal inconsistency
title_sort First-order swap structures semantics for some logics of formal inconsistency
author Coniglio, Marcelo E.
author_facet Coniglio, Marcelo E.
Figallo-Orellano, Aldo
Golzio, Ana C. [UNESP]
author_role author
author2 Figallo-Orellano, Aldo
Golzio, Ana C. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Univ Nacl Sur
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Coniglio, Marcelo E.
Figallo-Orellano, Aldo
Golzio, Ana C. [UNESP]
dc.subject.por.fl_str_mv First-order logics
logics of formal inconsistency
paraconsistent logics
swap structures
non-deterministic matrices
twist structures
topic First-order logics
logics of formal inconsistency
paraconsistent logics
swap structures
non-deterministic matrices
twist structures
description The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (i.e. logics containing contradictory but nontrivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous approaches to quantified LFIs presented in the literature. The case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1(o), is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1(o) with a standard equality predicate is also considered.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-01
2021-06-25T11:44:17Z
2021-06-25T11:44:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1093/logcom/exaa027
Journal Of Logic And Computation. Oxford: Oxford Univ Press, v. 30, n. 6, p. 1257-1290, 2020.
0955-792X
http://hdl.handle.net/11449/208958
10.1093/logcom/exaa027
WOS:000593083900004
url http://dx.doi.org/10.1093/logcom/exaa027
http://hdl.handle.net/11449/208958
identifier_str_mv Journal Of Logic And Computation. Oxford: Oxford Univ Press, v. 30, n. 6, p. 1257-1290, 2020.
0955-792X
10.1093/logcom/exaa027
WOS:000593083900004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of Logic And Computation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1257-1290
dc.publisher.none.fl_str_mv Oxford Univ Press
publisher.none.fl_str_mv Oxford Univ Press
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129240357404672