Green-Naghdi dynamics of surface wind waves in finite depth

Detalhes bibliográficos
Autor(a) principal: Manna, M. A.
Data de Publicação: 2018
Outros Autores: Latifi, A., Kraenkel, R. A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1873-7005/aaa739
http://hdl.handle.net/11449/176140
Resumo: The Miles' quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles' theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.
id UNSP_b13fa2dab9ad5a1b2501ec5544449e20
oai_identifier_str oai:repositorio.unesp.br:11449/176140
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Green-Naghdi dynamics of surface wind waves in finite depthMiles mechanismnonlinear Green-Nagdhi modelsurface waveswaves in finite depthwind-wavesThe Miles' quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles' theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.Université de Montpellier (UM) Conseil National de la Recherche Scientifique (CNRS) Laboratoire Charles Coulomb UMR 5221Department of Physics Faculty of Sciences Qom University of TechnologyInstituto de Física Téorica UNESP - Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 27, Bloco IIInstituto de Física Téorica UNESP - Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 27, Bloco IILaboratoire Charles Coulomb UMR 5221Qom University of TechnologyUniversidade Estadual Paulista (Unesp)Manna, M. A.Latifi, A.Kraenkel, R. A. [UNESP]2018-12-11T17:19:13Z2018-12-11T17:19:13Z2018-02-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://dx.doi.org/10.1088/1873-7005/aaa739Fluid Dynamics Research, v. 50, n. 2, 2018.0169-5983http://hdl.handle.net/11449/17614010.1088/1873-7005/aaa7392-s2.0-850449770192-s2.0-85044977019.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFluid Dynamics Research0,476info:eu-repo/semantics/openAccess2023-11-24T06:18:24Zoai:repositorio.unesp.br:11449/176140Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:38:41.861741Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Green-Naghdi dynamics of surface wind waves in finite depth
title Green-Naghdi dynamics of surface wind waves in finite depth
spellingShingle Green-Naghdi dynamics of surface wind waves in finite depth
Manna, M. A.
Miles mechanism
nonlinear Green-Nagdhi model
surface waves
waves in finite depth
wind-waves
title_short Green-Naghdi dynamics of surface wind waves in finite depth
title_full Green-Naghdi dynamics of surface wind waves in finite depth
title_fullStr Green-Naghdi dynamics of surface wind waves in finite depth
title_full_unstemmed Green-Naghdi dynamics of surface wind waves in finite depth
title_sort Green-Naghdi dynamics of surface wind waves in finite depth
author Manna, M. A.
author_facet Manna, M. A.
Latifi, A.
Kraenkel, R. A. [UNESP]
author_role author
author2 Latifi, A.
Kraenkel, R. A. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Laboratoire Charles Coulomb UMR 5221
Qom University of Technology
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Manna, M. A.
Latifi, A.
Kraenkel, R. A. [UNESP]
dc.subject.por.fl_str_mv Miles mechanism
nonlinear Green-Nagdhi model
surface waves
waves in finite depth
wind-waves
topic Miles mechanism
nonlinear Green-Nagdhi model
surface waves
waves in finite depth
wind-waves
description The Miles' quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles' theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:19:13Z
2018-12-11T17:19:13Z
2018-02-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1873-7005/aaa739
Fluid Dynamics Research, v. 50, n. 2, 2018.
0169-5983
http://hdl.handle.net/11449/176140
10.1088/1873-7005/aaa739
2-s2.0-85044977019
2-s2.0-85044977019.pdf
url http://dx.doi.org/10.1088/1873-7005/aaa739
http://hdl.handle.net/11449/176140
identifier_str_mv Fluid Dynamics Research, v. 50, n. 2, 2018.
0169-5983
10.1088/1873-7005/aaa739
2-s2.0-85044977019
2-s2.0-85044977019.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fluid Dynamics Research
0,476
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128959033901056