Black Hole Algorithm for non-technical losses characterization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/LASCAS.2015.7250405 http://hdl.handle.net/11449/177555 |
Resumo: | With the consolidation of Smart Grids, a considerable amount of works can be noticed, mainly with respect to the application of several artificial intelligence techniques in order to automatically identify non-technical losses, but the problem of selecting the most representative features has not been widely discussed. In this work, we make a parallel among the problem of non-technical losses and the task of irregular consumers characterization by means of a recent meta-heuristic optimization technique called Black Hole Algorithm (BHA). The experimental setup is conducted over two private datasets provided by a Brazilian electric power company, and it shows the importance of selecting the most relevant features in the context of non-technical losses identification, as well as the suitability of BHA to this task. |
id |
UNSP_b393ff12a4af0de915425f5a371e6d43 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/177555 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Black Hole Algorithm for non-technical losses characterizationWith the consolidation of Smart Grids, a considerable amount of works can be noticed, mainly with respect to the application of several artificial intelligence techniques in order to automatically identify non-technical losses, but the problem of selecting the most representative features has not been widely discussed. In this work, we make a parallel among the problem of non-technical losses and the task of irregular consumers characterization by means of a recent meta-heuristic optimization technique called Black Hole Algorithm (BHA). The experimental setup is conducted over two private datasets provided by a Brazilian electric power company, and it shows the importance of selecting the most relevant features in the context of non-technical losses identification, as well as the suitability of BHA to this task.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Computer Science Department, Federal University of São CarlosDepartment of Electrical Engineering, UNESP-Univ Estadual PaulistaDepartment of Computing, UNESP-Univ Estadual PaulistaDepartment of Electrical Engineering, UNESP-Univ Estadual PaulistaDepartment of Computing, UNESP-Univ Estadual PaulistaFAPESP: #2009/16206-1FAPESP: #2012/14158-2FAPESP: #2013120387-7CNPq: #30318212011-3CNPq: #47057112013-6Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Rodrigues, DouglasRamos, Caio César Oba [UNESP]De Souza, André Nunes [UNESP]Papa, João Paulo [UNESP]2018-12-11T17:25:58Z2018-12-11T17:25:58Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/LASCAS.2015.72504052015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings.http://hdl.handle.net/11449/17755510.1109/LASCAS.2015.72504052-s2.0-84945151872Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:34Zoai:repositorio.unesp.br:11449/177555Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:32:07.164866Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Black Hole Algorithm for non-technical losses characterization |
title |
Black Hole Algorithm for non-technical losses characterization |
spellingShingle |
Black Hole Algorithm for non-technical losses characterization Rodrigues, Douglas |
title_short |
Black Hole Algorithm for non-technical losses characterization |
title_full |
Black Hole Algorithm for non-technical losses characterization |
title_fullStr |
Black Hole Algorithm for non-technical losses characterization |
title_full_unstemmed |
Black Hole Algorithm for non-technical losses characterization |
title_sort |
Black Hole Algorithm for non-technical losses characterization |
author |
Rodrigues, Douglas |
author_facet |
Rodrigues, Douglas Ramos, Caio César Oba [UNESP] De Souza, André Nunes [UNESP] Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Ramos, Caio César Oba [UNESP] De Souza, André Nunes [UNESP] Papa, João Paulo [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Rodrigues, Douglas Ramos, Caio César Oba [UNESP] De Souza, André Nunes [UNESP] Papa, João Paulo [UNESP] |
description |
With the consolidation of Smart Grids, a considerable amount of works can be noticed, mainly with respect to the application of several artificial intelligence techniques in order to automatically identify non-technical losses, but the problem of selecting the most representative features has not been widely discussed. In this work, we make a parallel among the problem of non-technical losses and the task of irregular consumers characterization by means of a recent meta-heuristic optimization technique called Black Hole Algorithm (BHA). The experimental setup is conducted over two private datasets provided by a Brazilian electric power company, and it shows the importance of selecting the most relevant features in the context of non-technical losses identification, as well as the suitability of BHA to this task. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-12-11T17:25:58Z 2018-12-11T17:25:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/LASCAS.2015.7250405 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings. http://hdl.handle.net/11449/177555 10.1109/LASCAS.2015.7250405 2-s2.0-84945151872 |
url |
http://dx.doi.org/10.1109/LASCAS.2015.7250405 http://hdl.handle.net/11449/177555 |
identifier_str_mv |
2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings. 10.1109/LASCAS.2015.7250405 2-s2.0-84945151872 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129529742360576 |