Black Hole Algorithm for non-technical losses characterization

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Douglas
Data de Publicação: 2015
Outros Autores: Ramos, Caio César Oba [UNESP], De Souza, André Nunes [UNESP], Papa, João Paulo [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/LASCAS.2015.7250405
http://hdl.handle.net/11449/177555
Resumo: With the consolidation of Smart Grids, a considerable amount of works can be noticed, mainly with respect to the application of several artificial intelligence techniques in order to automatically identify non-technical losses, but the problem of selecting the most representative features has not been widely discussed. In this work, we make a parallel among the problem of non-technical losses and the task of irregular consumers characterization by means of a recent meta-heuristic optimization technique called Black Hole Algorithm (BHA). The experimental setup is conducted over two private datasets provided by a Brazilian electric power company, and it shows the importance of selecting the most relevant features in the context of non-technical losses identification, as well as the suitability of BHA to this task.
id UNSP_b393ff12a4af0de915425f5a371e6d43
oai_identifier_str oai:repositorio.unesp.br:11449/177555
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Black Hole Algorithm for non-technical losses characterizationWith the consolidation of Smart Grids, a considerable amount of works can be noticed, mainly with respect to the application of several artificial intelligence techniques in order to automatically identify non-technical losses, but the problem of selecting the most representative features has not been widely discussed. In this work, we make a parallel among the problem of non-technical losses and the task of irregular consumers characterization by means of a recent meta-heuristic optimization technique called Black Hole Algorithm (BHA). The experimental setup is conducted over two private datasets provided by a Brazilian electric power company, and it shows the importance of selecting the most relevant features in the context of non-technical losses identification, as well as the suitability of BHA to this task.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Computer Science Department, Federal University of São CarlosDepartment of Electrical Engineering, UNESP-Univ Estadual PaulistaDepartment of Computing, UNESP-Univ Estadual PaulistaDepartment of Electrical Engineering, UNESP-Univ Estadual PaulistaDepartment of Computing, UNESP-Univ Estadual PaulistaFAPESP: #2009/16206-1FAPESP: #2012/14158-2FAPESP: #2013120387-7CNPq: #30318212011-3CNPq: #47057112013-6Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Rodrigues, DouglasRamos, Caio César Oba [UNESP]De Souza, André Nunes [UNESP]Papa, João Paulo [UNESP]2018-12-11T17:25:58Z2018-12-11T17:25:58Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/LASCAS.2015.72504052015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings.http://hdl.handle.net/11449/17755510.1109/LASCAS.2015.72504052-s2.0-84945151872Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedingsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:34Zoai:repositorio.unesp.br:11449/177555Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:32:07.164866Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Black Hole Algorithm for non-technical losses characterization
title Black Hole Algorithm for non-technical losses characterization
spellingShingle Black Hole Algorithm for non-technical losses characterization
Rodrigues, Douglas
title_short Black Hole Algorithm for non-technical losses characterization
title_full Black Hole Algorithm for non-technical losses characterization
title_fullStr Black Hole Algorithm for non-technical losses characterization
title_full_unstemmed Black Hole Algorithm for non-technical losses characterization
title_sort Black Hole Algorithm for non-technical losses characterization
author Rodrigues, Douglas
author_facet Rodrigues, Douglas
Ramos, Caio César Oba [UNESP]
De Souza, André Nunes [UNESP]
Papa, João Paulo [UNESP]
author_role author
author2 Ramos, Caio César Oba [UNESP]
De Souza, André Nunes [UNESP]
Papa, João Paulo [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rodrigues, Douglas
Ramos, Caio César Oba [UNESP]
De Souza, André Nunes [UNESP]
Papa, João Paulo [UNESP]
description With the consolidation of Smart Grids, a considerable amount of works can be noticed, mainly with respect to the application of several artificial intelligence techniques in order to automatically identify non-technical losses, but the problem of selecting the most representative features has not been widely discussed. In this work, we make a parallel among the problem of non-technical losses and the task of irregular consumers characterization by means of a recent meta-heuristic optimization technique called Black Hole Algorithm (BHA). The experimental setup is conducted over two private datasets provided by a Brazilian electric power company, and it shows the importance of selecting the most relevant features in the context of non-technical losses identification, as well as the suitability of BHA to this task.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-12-11T17:25:58Z
2018-12-11T17:25:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/LASCAS.2015.7250405
2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings.
http://hdl.handle.net/11449/177555
10.1109/LASCAS.2015.7250405
2-s2.0-84945151872
url http://dx.doi.org/10.1109/LASCAS.2015.7250405
http://hdl.handle.net/11449/177555
identifier_str_mv 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings.
10.1109/LASCAS.2015.7250405
2-s2.0-84945151872
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015 - Conference Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129529742360576