Linearizability of the perturbed Burgers equation

Detalhes bibliográficos
Autor(a) principal: Kraenkel, Roberto André [UNESP]
Data de Publicação: 1998
Outros Autores: Pereira, J. G. [UNESP], De Rey Neto, E. C. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevE.58.2526
http://hdl.handle.net/11449/65490
Resumo: We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.
id UNSP_b3ed785d9e42fa9deffc572abc3827dd
oai_identifier_str oai:repositorio.unesp.br:11449/65490
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Linearizability of the perturbed Burgers equationWe show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.Inst. de Fis. Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São PauloInst. de Fis. Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São PauloUniversidade Estadual Paulista (Unesp)Kraenkel, Roberto André [UNESP]Pereira, J. G. [UNESP]De Rey Neto, E. C. [UNESP]2014-05-27T11:19:36Z2014-05-27T11:19:36Z1998-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2526-2530application/pdfhttp://dx.doi.org/10.1103/PhysRevE.58.2526Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 58, n. 2 SUPPL. B, p. 2526-2530, 1998.1063-651Xhttp://hdl.handle.net/11449/6549010.1103/PhysRevE.58.2526WOS:0000753815000652-s2.0-00022071182-s2.0-0002207118.pdf1599966126072450Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topicsinfo:eu-repo/semantics/openAccess2023-11-10T06:09:21Zoai:repositorio.unesp.br:11449/65490Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:17:40.171610Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Linearizability of the perturbed Burgers equation
title Linearizability of the perturbed Burgers equation
spellingShingle Linearizability of the perturbed Burgers equation
Kraenkel, Roberto André [UNESP]
title_short Linearizability of the perturbed Burgers equation
title_full Linearizability of the perturbed Burgers equation
title_fullStr Linearizability of the perturbed Burgers equation
title_full_unstemmed Linearizability of the perturbed Burgers equation
title_sort Linearizability of the perturbed Burgers equation
author Kraenkel, Roberto André [UNESP]
author_facet Kraenkel, Roberto André [UNESP]
Pereira, J. G. [UNESP]
De Rey Neto, E. C. [UNESP]
author_role author
author2 Pereira, J. G. [UNESP]
De Rey Neto, E. C. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Kraenkel, Roberto André [UNESP]
Pereira, J. G. [UNESP]
De Rey Neto, E. C. [UNESP]
description We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.
publishDate 1998
dc.date.none.fl_str_mv 1998-08-01
2014-05-27T11:19:36Z
2014-05-27T11:19:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevE.58.2526
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 58, n. 2 SUPPL. B, p. 2526-2530, 1998.
1063-651X
http://hdl.handle.net/11449/65490
10.1103/PhysRevE.58.2526
WOS:000075381500065
2-s2.0-0002207118
2-s2.0-0002207118.pdf
1599966126072450
url http://dx.doi.org/10.1103/PhysRevE.58.2526
http://hdl.handle.net/11449/65490
identifier_str_mv Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 58, n. 2 SUPPL. B, p. 2526-2530, 1998.
1063-651X
10.1103/PhysRevE.58.2526
WOS:000075381500065
2-s2.0-0002207118
2-s2.0-0002207118.pdf
1599966126072450
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2526-2530
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128786022006784