Linearizability of the perturbed Burgers equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevE.58.2526 http://hdl.handle.net/11449/65490 |
Resumo: | We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas. |
id |
UNSP_b3ed785d9e42fa9deffc572abc3827dd |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/65490 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Linearizability of the perturbed Burgers equationWe show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.Inst. de Fis. Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São PauloInst. de Fis. Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São PauloUniversidade Estadual Paulista (Unesp)Kraenkel, Roberto André [UNESP]Pereira, J. G. [UNESP]De Rey Neto, E. C. [UNESP]2014-05-27T11:19:36Z2014-05-27T11:19:36Z1998-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2526-2530application/pdfhttp://dx.doi.org/10.1103/PhysRevE.58.2526Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 58, n. 2 SUPPL. B, p. 2526-2530, 1998.1063-651Xhttp://hdl.handle.net/11449/6549010.1103/PhysRevE.58.2526WOS:0000753815000652-s2.0-00022071182-s2.0-0002207118.pdf1599966126072450Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topicsinfo:eu-repo/semantics/openAccess2023-11-10T06:09:21Zoai:repositorio.unesp.br:11449/65490Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:17:40.171610Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Linearizability of the perturbed Burgers equation |
title |
Linearizability of the perturbed Burgers equation |
spellingShingle |
Linearizability of the perturbed Burgers equation Kraenkel, Roberto André [UNESP] |
title_short |
Linearizability of the perturbed Burgers equation |
title_full |
Linearizability of the perturbed Burgers equation |
title_fullStr |
Linearizability of the perturbed Burgers equation |
title_full_unstemmed |
Linearizability of the perturbed Burgers equation |
title_sort |
Linearizability of the perturbed Burgers equation |
author |
Kraenkel, Roberto André [UNESP] |
author_facet |
Kraenkel, Roberto André [UNESP] Pereira, J. G. [UNESP] De Rey Neto, E. C. [UNESP] |
author_role |
author |
author2 |
Pereira, J. G. [UNESP] De Rey Neto, E. C. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Kraenkel, Roberto André [UNESP] Pereira, J. G. [UNESP] De Rey Neto, E. C. [UNESP] |
description |
We show in this report that the perturbed Burgers equation ut = 2uux + uxx + ε(3 α1u2ux + 3 α2uuxx + 3 α3u2 x + α4uxxx) is equivalent, through a near-identity transformation and up to O(ε), to a linearizable equation if the condition 3 α1 - 3 α3 - 3/2α2 + 3/2α4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. We show, furthermore, that nonlinearizable cases lead to perturbative expansions with secular-type behavior. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-08-01 2014-05-27T11:19:36Z 2014-05-27T11:19:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevE.58.2526 Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 58, n. 2 SUPPL. B, p. 2526-2530, 1998. 1063-651X http://hdl.handle.net/11449/65490 10.1103/PhysRevE.58.2526 WOS:000075381500065 2-s2.0-0002207118 2-s2.0-0002207118.pdf 1599966126072450 |
url |
http://dx.doi.org/10.1103/PhysRevE.58.2526 http://hdl.handle.net/11449/65490 |
identifier_str_mv |
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 58, n. 2 SUPPL. B, p. 2526-2530, 1998. 1063-651X 10.1103/PhysRevE.58.2526 WOS:000075381500065 2-s2.0-0002207118 2-s2.0-0002207118.pdf 1599966126072450 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2526-2530 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128786022006784 |