Selecting candidate labels for hierarchical document clusters using association rules

Detalhes bibliográficos
Autor(a) principal: Dos Santos, Fabiano Fernandes
Data de Publicação: 2010
Outros Autores: De Carvalho, Veronica Oliveira [UNESP], Oliveira Rezende, Solange
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-642-16773-7_14
http://hdl.handle.net/11449/72231
Resumo: One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.
id UNSP_b66d37b4add37bdab1f76682123c1e34
oai_identifier_str oai:repositorio.unesp.br:11449/72231
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Selecting candidate labels for hierarchical document clusters using association rulesassociation ruleslabel hierarchical clusteringtext miningClassical methodsHierarchical documentPrecision and recallSearch and retrievalStructural representationText miningArtificial intelligenceKnowledge representationSoft computingAssociation rulesOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.Instituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo (USP)Instituto de Geociências e Ciências Exatas UNESP - Univ. Estadual PaulistaInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual PaulistaUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Dos Santos, Fabiano FernandesDe Carvalho, Veronica Oliveira [UNESP]Oliveira Rezende, Solange2014-05-27T11:25:26Z2014-05-27T11:25:26Z2010-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject163-176http://dx.doi.org/10.1007/978-3-642-16773-7_14Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010.0302-97431611-3349http://hdl.handle.net/11449/7223110.1007/978-3-642-16773-7_142-s2.0-78649991980Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2021-10-23T21:44:13Zoai:repositorio.unesp.br:11449/72231Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:44:46.145290Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Selecting candidate labels for hierarchical document clusters using association rules
title Selecting candidate labels for hierarchical document clusters using association rules
spellingShingle Selecting candidate labels for hierarchical document clusters using association rules
Dos Santos, Fabiano Fernandes
association rules
label hierarchical clustering
text mining
Classical methods
Hierarchical document
Precision and recall
Search and retrieval
Structural representation
Text mining
Artificial intelligence
Knowledge representation
Soft computing
Association rules
title_short Selecting candidate labels for hierarchical document clusters using association rules
title_full Selecting candidate labels for hierarchical document clusters using association rules
title_fullStr Selecting candidate labels for hierarchical document clusters using association rules
title_full_unstemmed Selecting candidate labels for hierarchical document clusters using association rules
title_sort Selecting candidate labels for hierarchical document clusters using association rules
author Dos Santos, Fabiano Fernandes
author_facet Dos Santos, Fabiano Fernandes
De Carvalho, Veronica Oliveira [UNESP]
Oliveira Rezende, Solange
author_role author
author2 De Carvalho, Veronica Oliveira [UNESP]
Oliveira Rezende, Solange
author2_role author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Dos Santos, Fabiano Fernandes
De Carvalho, Veronica Oliveira [UNESP]
Oliveira Rezende, Solange
dc.subject.por.fl_str_mv association rules
label hierarchical clustering
text mining
Classical methods
Hierarchical document
Precision and recall
Search and retrieval
Structural representation
Text mining
Artificial intelligence
Knowledge representation
Soft computing
Association rules
topic association rules
label hierarchical clustering
text mining
Classical methods
Hierarchical document
Precision and recall
Search and retrieval
Structural representation
Text mining
Artificial intelligence
Knowledge representation
Soft computing
Association rules
description One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-16
2014-05-27T11:25:26Z
2014-05-27T11:25:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-642-16773-7_14
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010.
0302-9743
1611-3349
http://hdl.handle.net/11449/72231
10.1007/978-3-642-16773-7_14
2-s2.0-78649991980
url http://dx.doi.org/10.1007/978-3-642-16773-7_14
http://hdl.handle.net/11449/72231
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010.
0302-9743
1611-3349
10.1007/978-3-642-16773-7_14
2-s2.0-78649991980
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 163-176
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129241369280512