Selecting candidate labels for hierarchical document clusters using association rules
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-642-16773-7_14 http://hdl.handle.net/11449/72231 |
Resumo: | One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag. |
id |
UNSP_b66d37b4add37bdab1f76682123c1e34 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72231 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Selecting candidate labels for hierarchical document clusters using association rulesassociation ruleslabel hierarchical clusteringtext miningClassical methodsHierarchical documentPrecision and recallSearch and retrievalStructural representationText miningArtificial intelligenceKnowledge representationSoft computingAssociation rulesOne way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag.Instituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo (USP)Instituto de Geociências e Ciências Exatas UNESP - Univ. Estadual PaulistaInstituto de Geociências e Ciências Exatas UNESP - Univ. Estadual PaulistaUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Dos Santos, Fabiano FernandesDe Carvalho, Veronica Oliveira [UNESP]Oliveira Rezende, Solange2014-05-27T11:25:26Z2014-05-27T11:25:26Z2010-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject163-176http://dx.doi.org/10.1007/978-3-642-16773-7_14Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010.0302-97431611-3349http://hdl.handle.net/11449/7223110.1007/978-3-642-16773-7_142-s2.0-78649991980Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2021-10-23T21:44:13Zoai:repositorio.unesp.br:11449/72231Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:44:46.145290Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Selecting candidate labels for hierarchical document clusters using association rules |
title |
Selecting candidate labels for hierarchical document clusters using association rules |
spellingShingle |
Selecting candidate labels for hierarchical document clusters using association rules Dos Santos, Fabiano Fernandes association rules label hierarchical clustering text mining Classical methods Hierarchical document Precision and recall Search and retrieval Structural representation Text mining Artificial intelligence Knowledge representation Soft computing Association rules |
title_short |
Selecting candidate labels for hierarchical document clusters using association rules |
title_full |
Selecting candidate labels for hierarchical document clusters using association rules |
title_fullStr |
Selecting candidate labels for hierarchical document clusters using association rules |
title_full_unstemmed |
Selecting candidate labels for hierarchical document clusters using association rules |
title_sort |
Selecting candidate labels for hierarchical document clusters using association rules |
author |
Dos Santos, Fabiano Fernandes |
author_facet |
Dos Santos, Fabiano Fernandes De Carvalho, Veronica Oliveira [UNESP] Oliveira Rezende, Solange |
author_role |
author |
author2 |
De Carvalho, Veronica Oliveira [UNESP] Oliveira Rezende, Solange |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Dos Santos, Fabiano Fernandes De Carvalho, Veronica Oliveira [UNESP] Oliveira Rezende, Solange |
dc.subject.por.fl_str_mv |
association rules label hierarchical clustering text mining Classical methods Hierarchical document Precision and recall Search and retrieval Structural representation Text mining Artificial intelligence Knowledge representation Soft computing Association rules |
topic |
association rules label hierarchical clustering text mining Classical methods Hierarchical document Precision and recall Search and retrieval Structural representation Text mining Artificial intelligence Knowledge representation Soft computing Association rules |
description |
One way to organize knowledge and make its search and retrieval easier is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters. In many cases the labels have to be built using only the terms in the documents of the collection. This paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical document clusters. The candidates are processed by a classical method to generate the labels. The idea of the proposed method is to process each parent-child relationship of the nodes as an antecedent-consequent relationship of association rules. The experimental results show that the proposed method can improve the precision and recall of labels obtained by classical methods. © 2010 Springer-Verlag. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-16 2014-05-27T11:25:26Z 2014-05-27T11:25:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-642-16773-7_14 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010. 0302-9743 1611-3349 http://hdl.handle.net/11449/72231 10.1007/978-3-642-16773-7_14 2-s2.0-78649991980 |
url |
http://dx.doi.org/10.1007/978-3-642-16773-7_14 http://hdl.handle.net/11449/72231 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6438 LNAI, n. PART 2, p. 163-176, 2010. 0302-9743 1611-3349 10.1007/978-3-642-16773-7_14 2-s2.0-78649991980 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
163-176 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129241369280512 |