Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1557/jmr.2020.302 http://hdl.handle.net/11449/209771 |
Resumo: | The fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified beta-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration. |
id |
UNSP_b8532919e2732e0ad1e188a76e048747 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/209771 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffoldspolyvinylidene fluoridenano-hydroxyapatitenanotechnologyelectrospinningelectrodepositionbactericidalbone regenerationThe fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified beta-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFPI Fed Univ Piaui, Mat Sci & Engn Grad Program, BioMatLab Grp, LIMAV Interdisciplinary Lab Adv Mat, BR-64049550 Teresina, Piaui, BrazilUniv Brasil, Inst Cient & Tecnol, BR-08230030 Sao Paulo, BrazilUFPI Fed Univ Piaui, Dept Phys, 64049550 Teresina, PI, BrazilUniv UniMetrocamp, BR-13035500 Campinas, SP, BrazilUniv Estadual Campinas, Fac Med Sci, BR-13083970 Campinas, SP, BrazilUniv Santo Amaro, BR-04829300 Sao Paulo, BrazilSao Paulo State Univ, Inst Sci & Technol, Dept Biosci & Oral Diag, BR-12247004 Sao Jose Dos Campos, SP, BrazilSao Paulo State Univ, Inst Sci & Technol, Dept Biosci & Oral Diag, BR-12247004 Sao Jose Dos Campos, SP, BrazilCNPq: 303752/2017-3CNPq: 404683/2018-5CNPq: 304133/2017-5CNPq: 424163/2016-0Cambridge Univ PressUFPI Fed Univ PiauiUniv BrasilUniv UniMetrocampUniversidade Estadual de Campinas (UNICAMP)Univ Santo AmaroUniversidade Estadual Paulista (Unesp)Rodrigues, Pedro J. G.Elias, Conceicao de M. V.Viana, Bartolomeu C.Hollanda, Luciana M. deStocco, Thiago D.Vasconcellos, Luana M. R. de [UNESP]Mello, Daphne de C. R. [UNESP]Santos, Francisco E. P.Marciano, Fernanda R.Lobo, Anderson O.2021-06-25T12:28:45Z2021-06-25T12:28:45Z2020-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3265-3275http://dx.doi.org/10.1557/jmr.2020.302Journal Of Materials Research. New York: Cambridge Univ Press, v. 35, n. 23-24, p. 3265-3275, 2020.0884-2914http://hdl.handle.net/11449/20977110.1557/jmr.2020.302WOS:000598486700012Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Materials Researchinfo:eu-repo/semantics/openAccess2021-10-23T19:50:00Zoai:repositorio.unesp.br:11449/209771Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:46:30.366077Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds |
title |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds |
spellingShingle |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds Rodrigues, Pedro J. G. polyvinylidene fluoride nano-hydroxyapatite nanotechnology electrospinning electrodeposition bactericidal bone regeneration |
title_short |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds |
title_full |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds |
title_fullStr |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds |
title_full_unstemmed |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds |
title_sort |
Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds |
author |
Rodrigues, Pedro J. G. |
author_facet |
Rodrigues, Pedro J. G. Elias, Conceicao de M. V. Viana, Bartolomeu C. Hollanda, Luciana M. de Stocco, Thiago D. Vasconcellos, Luana M. R. de [UNESP] Mello, Daphne de C. R. [UNESP] Santos, Francisco E. P. Marciano, Fernanda R. Lobo, Anderson O. |
author_role |
author |
author2 |
Elias, Conceicao de M. V. Viana, Bartolomeu C. Hollanda, Luciana M. de Stocco, Thiago D. Vasconcellos, Luana M. R. de [UNESP] Mello, Daphne de C. R. [UNESP] Santos, Francisco E. P. Marciano, Fernanda R. Lobo, Anderson O. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
UFPI Fed Univ Piaui Univ Brasil Univ UniMetrocamp Universidade Estadual de Campinas (UNICAMP) Univ Santo Amaro Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Rodrigues, Pedro J. G. Elias, Conceicao de M. V. Viana, Bartolomeu C. Hollanda, Luciana M. de Stocco, Thiago D. Vasconcellos, Luana M. R. de [UNESP] Mello, Daphne de C. R. [UNESP] Santos, Francisco E. P. Marciano, Fernanda R. Lobo, Anderson O. |
dc.subject.por.fl_str_mv |
polyvinylidene fluoride nano-hydroxyapatite nanotechnology electrospinning electrodeposition bactericidal bone regeneration |
topic |
polyvinylidene fluoride nano-hydroxyapatite nanotechnology electrospinning electrodeposition bactericidal bone regeneration |
description |
The fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified beta-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-14 2021-06-25T12:28:45Z 2021-06-25T12:28:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1557/jmr.2020.302 Journal Of Materials Research. New York: Cambridge Univ Press, v. 35, n. 23-24, p. 3265-3275, 2020. 0884-2914 http://hdl.handle.net/11449/209771 10.1557/jmr.2020.302 WOS:000598486700012 |
url |
http://dx.doi.org/10.1557/jmr.2020.302 http://hdl.handle.net/11449/209771 |
identifier_str_mv |
Journal Of Materials Research. New York: Cambridge Univ Press, v. 35, n. 23-24, p. 3265-3275, 2020. 0884-2914 10.1557/jmr.2020.302 WOS:000598486700012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal Of Materials Research |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3265-3275 |
dc.publisher.none.fl_str_mv |
Cambridge Univ Press |
publisher.none.fl_str_mv |
Cambridge Univ Press |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128414627921920 |