Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Pedro J. G.
Data de Publicação: 2020
Outros Autores: Elias, Conceicao de M. V., Viana, Bartolomeu C., Hollanda, Luciana M. de, Stocco, Thiago D., Vasconcellos, Luana M. R. de [UNESP], Mello, Daphne de C. R. [UNESP], Santos, Francisco E. P., Marciano, Fernanda R., Lobo, Anderson O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1557/jmr.2020.302
http://hdl.handle.net/11449/209771
Resumo: The fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified beta-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration.
id UNSP_b8532919e2732e0ad1e188a76e048747
oai_identifier_str oai:repositorio.unesp.br:11449/209771
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffoldspolyvinylidene fluoridenano-hydroxyapatitenanotechnologyelectrospinningelectrodepositionbactericidalbone regenerationThe fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified beta-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFPI Fed Univ Piaui, Mat Sci & Engn Grad Program, BioMatLab Grp, LIMAV Interdisciplinary Lab Adv Mat, BR-64049550 Teresina, Piaui, BrazilUniv Brasil, Inst Cient & Tecnol, BR-08230030 Sao Paulo, BrazilUFPI Fed Univ Piaui, Dept Phys, 64049550 Teresina, PI, BrazilUniv UniMetrocamp, BR-13035500 Campinas, SP, BrazilUniv Estadual Campinas, Fac Med Sci, BR-13083970 Campinas, SP, BrazilUniv Santo Amaro, BR-04829300 Sao Paulo, BrazilSao Paulo State Univ, Inst Sci & Technol, Dept Biosci & Oral Diag, BR-12247004 Sao Jose Dos Campos, SP, BrazilSao Paulo State Univ, Inst Sci & Technol, Dept Biosci & Oral Diag, BR-12247004 Sao Jose Dos Campos, SP, BrazilCNPq: 303752/2017-3CNPq: 404683/2018-5CNPq: 304133/2017-5CNPq: 424163/2016-0Cambridge Univ PressUFPI Fed Univ PiauiUniv BrasilUniv UniMetrocampUniversidade Estadual de Campinas (UNICAMP)Univ Santo AmaroUniversidade Estadual Paulista (Unesp)Rodrigues, Pedro J. G.Elias, Conceicao de M. V.Viana, Bartolomeu C.Hollanda, Luciana M. deStocco, Thiago D.Vasconcellos, Luana M. R. de [UNESP]Mello, Daphne de C. R. [UNESP]Santos, Francisco E. P.Marciano, Fernanda R.Lobo, Anderson O.2021-06-25T12:28:45Z2021-06-25T12:28:45Z2020-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3265-3275http://dx.doi.org/10.1557/jmr.2020.302Journal Of Materials Research. New York: Cambridge Univ Press, v. 35, n. 23-24, p. 3265-3275, 2020.0884-2914http://hdl.handle.net/11449/20977110.1557/jmr.2020.302WOS:000598486700012Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Materials Researchinfo:eu-repo/semantics/openAccess2021-10-23T19:50:00Zoai:repositorio.unesp.br:11449/209771Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:46:30.366077Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
title Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
spellingShingle Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
Rodrigues, Pedro J. G.
polyvinylidene fluoride
nano-hydroxyapatite
nanotechnology
electrospinning
electrodeposition
bactericidal
bone regeneration
title_short Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
title_full Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
title_fullStr Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
title_full_unstemmed Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
title_sort Electrodeposition of bactericidal and bioactive nano-hydroxyapatite onto electrospun piezoelectric polyvinylidene fluoride scaffolds
author Rodrigues, Pedro J. G.
author_facet Rodrigues, Pedro J. G.
Elias, Conceicao de M. V.
Viana, Bartolomeu C.
Hollanda, Luciana M. de
Stocco, Thiago D.
Vasconcellos, Luana M. R. de [UNESP]
Mello, Daphne de C. R. [UNESP]
Santos, Francisco E. P.
Marciano, Fernanda R.
Lobo, Anderson O.
author_role author
author2 Elias, Conceicao de M. V.
Viana, Bartolomeu C.
Hollanda, Luciana M. de
Stocco, Thiago D.
Vasconcellos, Luana M. R. de [UNESP]
Mello, Daphne de C. R. [UNESP]
Santos, Francisco E. P.
Marciano, Fernanda R.
Lobo, Anderson O.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv UFPI Fed Univ Piaui
Univ Brasil
Univ UniMetrocamp
Universidade Estadual de Campinas (UNICAMP)
Univ Santo Amaro
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rodrigues, Pedro J. G.
Elias, Conceicao de M. V.
Viana, Bartolomeu C.
Hollanda, Luciana M. de
Stocco, Thiago D.
Vasconcellos, Luana M. R. de [UNESP]
Mello, Daphne de C. R. [UNESP]
Santos, Francisco E. P.
Marciano, Fernanda R.
Lobo, Anderson O.
dc.subject.por.fl_str_mv polyvinylidene fluoride
nano-hydroxyapatite
nanotechnology
electrospinning
electrodeposition
bactericidal
bone regeneration
topic polyvinylidene fluoride
nano-hydroxyapatite
nanotechnology
electrospinning
electrodeposition
bactericidal
bone regeneration
description The fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified beta-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-14
2021-06-25T12:28:45Z
2021-06-25T12:28:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1557/jmr.2020.302
Journal Of Materials Research. New York: Cambridge Univ Press, v. 35, n. 23-24, p. 3265-3275, 2020.
0884-2914
http://hdl.handle.net/11449/209771
10.1557/jmr.2020.302
WOS:000598486700012
url http://dx.doi.org/10.1557/jmr.2020.302
http://hdl.handle.net/11449/209771
identifier_str_mv Journal Of Materials Research. New York: Cambridge Univ Press, v. 35, n. 23-24, p. 3265-3275, 2020.
0884-2914
10.1557/jmr.2020.302
WOS:000598486700012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal Of Materials Research
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3265-3275
dc.publisher.none.fl_str_mv Cambridge Univ Press
publisher.none.fl_str_mv Cambridge Univ Press
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128414627921920