Time series of images to improve tree species classification

Detalhes bibliográficos
Autor(a) principal: Miyoshi, G. T. [UNESP]
Data de Publicação: 2017
Outros Autores: Imai, N. N. [UNESP], De Moraes, M. V.A. [UNESP], Tommaselli, A. M.G. [UNESP], Näsi, R.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5194/isprs-archives-XLII-3-W3-123-2017
http://hdl.handle.net/11449/175481
Resumo: Tree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26%.
id UNSP_b8b84a31eb763c61e3e248bdd41bcfd0
oai_identifier_str oai:repositorio.unesp.br:11449/175481
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Time series of images to improve tree species classificationHyperspectral imageRandom ForestSAMSIDTime seriesTree species classificationUAVTree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26%.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Post Graduate Program in Cartographic Science São Paulo State University (UNESP)Dept. of Cartography São Paulo State University (UNESP)Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, P.O. Box 15Post Graduate Program in Cartographic Science São Paulo State University (UNESP)Dept. of Cartography São Paulo State University (UNESP)CNPq: 153854/2016-2FAPESP: 2013/50426-4Universidade Estadual Paulista (Unesp)Finnish Geospatial Research Institute FGIMiyoshi, G. T. [UNESP]Imai, N. N. [UNESP]De Moraes, M. V.A. [UNESP]Tommaselli, A. M.G. [UNESP]Näsi, R.2018-12-11T17:15:59Z2018-12-11T17:15:59Z2017-10-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject123-128application/pdfhttp://dx.doi.org/10.5194/isprs-archives-XLII-3-W3-123-2017International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, v. 42, n. 3W3, p. 123-128, 2017.1682-1750http://hdl.handle.net/11449/17548110.5194/isprs-archives-XLII-3-W3-123-20172-s2.0-850337109092-s2.0-85033710909.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archivesinfo:eu-repo/semantics/openAccess2024-06-18T15:02:39Zoai:repositorio.unesp.br:11449/175481Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:21:48.277506Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Time series of images to improve tree species classification
title Time series of images to improve tree species classification
spellingShingle Time series of images to improve tree species classification
Miyoshi, G. T. [UNESP]
Hyperspectral image
Random Forest
SAM
SID
Time series
Tree species classification
UAV
title_short Time series of images to improve tree species classification
title_full Time series of images to improve tree species classification
title_fullStr Time series of images to improve tree species classification
title_full_unstemmed Time series of images to improve tree species classification
title_sort Time series of images to improve tree species classification
author Miyoshi, G. T. [UNESP]
author_facet Miyoshi, G. T. [UNESP]
Imai, N. N. [UNESP]
De Moraes, M. V.A. [UNESP]
Tommaselli, A. M.G. [UNESP]
Näsi, R.
author_role author
author2 Imai, N. N. [UNESP]
De Moraes, M. V.A. [UNESP]
Tommaselli, A. M.G. [UNESP]
Näsi, R.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Finnish Geospatial Research Institute FGI
dc.contributor.author.fl_str_mv Miyoshi, G. T. [UNESP]
Imai, N. N. [UNESP]
De Moraes, M. V.A. [UNESP]
Tommaselli, A. M.G. [UNESP]
Näsi, R.
dc.subject.por.fl_str_mv Hyperspectral image
Random Forest
SAM
SID
Time series
Tree species classification
UAV
topic Hyperspectral image
Random Forest
SAM
SID
Time series
Tree species classification
UAV
description Tree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26%.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-19
2018-12-11T17:15:59Z
2018-12-11T17:15:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5194/isprs-archives-XLII-3-W3-123-2017
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, v. 42, n. 3W3, p. 123-128, 2017.
1682-1750
http://hdl.handle.net/11449/175481
10.5194/isprs-archives-XLII-3-W3-123-2017
2-s2.0-85033710909
2-s2.0-85033710909.pdf
url http://dx.doi.org/10.5194/isprs-archives-XLII-3-W3-123-2017
http://hdl.handle.net/11449/175481
identifier_str_mv International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, v. 42, n. 3W3, p. 123-128, 2017.
1682-1750
10.5194/isprs-archives-XLII-3-W3-123-2017
2-s2.0-85033710909
2-s2.0-85033710909.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 123-128
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129059108945920