Fine-tuning Deep Belief Networks using Harmony Search
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.asoc.2015.08.043 http://hdl.handle.net/11449/177563 |
Resumo: | In this paper, we deal with the problem of Deep Belief Networks (DBNs) parameters fine-tuning by means of a fast meta-heuristic approach named Harmony Search (HS). Although such deep learning-based technique has been widely used in the last years, more detailed studies about how to set its parameters may not be observed in the literature. We have shown we can obtain more accurate results comparing HS against with several of its variants, a random search and two variants of the well-known Hyperopt library. The experimental results were carried out in two public datasets considering the task of binary image reconstruction, three DBN learning algorithms and three layers. |
id |
UNSP_b962cb4a0973bb8ab5e7bf9e0394bb5c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/177563 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fine-tuning Deep Belief Networks using Harmony SearchDeep Belief NetworksHarmony SearchMeta-heuristicsRestricted Boltzmann MachinesIn this paper, we deal with the problem of Deep Belief Networks (DBNs) parameters fine-tuning by means of a fast meta-heuristic approach named Harmony Search (HS). Although such deep learning-based technique has been widely used in the last years, more detailed studies about how to set its parameters may not be observed in the literature. We have shown we can obtain more accurate results comparing HS against with several of its variants, a random search and two variants of the well-known Hyperopt library. The experimental results were carried out in two public datasets considering the task of binary image reconstruction, three DBN learning algorithms and three layers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP – Univ Estadual Paulista Department of ComputingHarvard University Center for Brain ScienceUNESP – Univ Estadual Paulista Department of ComputingFAPESP: 2013/20387-7FAPESP: 2014/16250-9CNPq: 303182/2011-3CNPq: 306166/2014-3CNPq: 470571/2013-6Universidade Estadual Paulista (Unesp)Center for Brain SciencePapa, João Paulo [UNESP]Scheirer, WalterCox, David Daniel2018-12-11T17:25:59Z2018-12-11T17:25:59Z2016-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article875-885application/pdfhttp://dx.doi.org/10.1016/j.asoc.2015.08.043Applied Soft Computing Journal, v. 46, p. 875-885.1568-4946http://hdl.handle.net/11449/17756310.1016/j.asoc.2015.08.0432-s2.0-849454065522-s2.0-84945406552.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Soft Computing Journal1,199info:eu-repo/semantics/openAccess2024-04-23T16:10:41Zoai:repositorio.unesp.br:11449/177563Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:40:04.288720Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fine-tuning Deep Belief Networks using Harmony Search |
title |
Fine-tuning Deep Belief Networks using Harmony Search |
spellingShingle |
Fine-tuning Deep Belief Networks using Harmony Search Papa, João Paulo [UNESP] Deep Belief Networks Harmony Search Meta-heuristics Restricted Boltzmann Machines |
title_short |
Fine-tuning Deep Belief Networks using Harmony Search |
title_full |
Fine-tuning Deep Belief Networks using Harmony Search |
title_fullStr |
Fine-tuning Deep Belief Networks using Harmony Search |
title_full_unstemmed |
Fine-tuning Deep Belief Networks using Harmony Search |
title_sort |
Fine-tuning Deep Belief Networks using Harmony Search |
author |
Papa, João Paulo [UNESP] |
author_facet |
Papa, João Paulo [UNESP] Scheirer, Walter Cox, David Daniel |
author_role |
author |
author2 |
Scheirer, Walter Cox, David Daniel |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Center for Brain Science |
dc.contributor.author.fl_str_mv |
Papa, João Paulo [UNESP] Scheirer, Walter Cox, David Daniel |
dc.subject.por.fl_str_mv |
Deep Belief Networks Harmony Search Meta-heuristics Restricted Boltzmann Machines |
topic |
Deep Belief Networks Harmony Search Meta-heuristics Restricted Boltzmann Machines |
description |
In this paper, we deal with the problem of Deep Belief Networks (DBNs) parameters fine-tuning by means of a fast meta-heuristic approach named Harmony Search (HS). Although such deep learning-based technique has been widely used in the last years, more detailed studies about how to set its parameters may not be observed in the literature. We have shown we can obtain more accurate results comparing HS against with several of its variants, a random search and two variants of the well-known Hyperopt library. The experimental results were carried out in two public datasets considering the task of binary image reconstruction, three DBN learning algorithms and three layers. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-01 2018-12-11T17:25:59Z 2018-12-11T17:25:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.asoc.2015.08.043 Applied Soft Computing Journal, v. 46, p. 875-885. 1568-4946 http://hdl.handle.net/11449/177563 10.1016/j.asoc.2015.08.043 2-s2.0-84945406552 2-s2.0-84945406552.pdf |
url |
http://dx.doi.org/10.1016/j.asoc.2015.08.043 http://hdl.handle.net/11449/177563 |
identifier_str_mv |
Applied Soft Computing Journal, v. 46, p. 875-885. 1568-4946 10.1016/j.asoc.2015.08.043 2-s2.0-84945406552 2-s2.0-84945406552.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Soft Computing Journal 1,199 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
875-885 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128262810894336 |