Fine-tuning Deep Belief Networks using Harmony Search

Detalhes bibliográficos
Autor(a) principal: Papa, João Paulo [UNESP]
Data de Publicação: 2016
Outros Autores: Scheirer, Walter, Cox, David Daniel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.asoc.2015.08.043
http://hdl.handle.net/11449/177563
Resumo: In this paper, we deal with the problem of Deep Belief Networks (DBNs) parameters fine-tuning by means of a fast meta-heuristic approach named Harmony Search (HS). Although such deep learning-based technique has been widely used in the last years, more detailed studies about how to set its parameters may not be observed in the literature. We have shown we can obtain more accurate results comparing HS against with several of its variants, a random search and two variants of the well-known Hyperopt library. The experimental results were carried out in two public datasets considering the task of binary image reconstruction, three DBN learning algorithms and three layers.
id UNSP_b962cb4a0973bb8ab5e7bf9e0394bb5c
oai_identifier_str oai:repositorio.unesp.br:11449/177563
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fine-tuning Deep Belief Networks using Harmony SearchDeep Belief NetworksHarmony SearchMeta-heuristicsRestricted Boltzmann MachinesIn this paper, we deal with the problem of Deep Belief Networks (DBNs) parameters fine-tuning by means of a fast meta-heuristic approach named Harmony Search (HS). Although such deep learning-based technique has been widely used in the last years, more detailed studies about how to set its parameters may not be observed in the literature. We have shown we can obtain more accurate results comparing HS against with several of its variants, a random search and two variants of the well-known Hyperopt library. The experimental results were carried out in two public datasets considering the task of binary image reconstruction, three DBN learning algorithms and three layers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP – Univ Estadual Paulista Department of ComputingHarvard University Center for Brain ScienceUNESP – Univ Estadual Paulista Department of ComputingFAPESP: 2013/20387-7FAPESP: 2014/16250-9CNPq: 303182/2011-3CNPq: 306166/2014-3CNPq: 470571/2013-6Universidade Estadual Paulista (Unesp)Center for Brain SciencePapa, João Paulo [UNESP]Scheirer, WalterCox, David Daniel2018-12-11T17:25:59Z2018-12-11T17:25:59Z2016-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article875-885application/pdfhttp://dx.doi.org/10.1016/j.asoc.2015.08.043Applied Soft Computing Journal, v. 46, p. 875-885.1568-4946http://hdl.handle.net/11449/17756310.1016/j.asoc.2015.08.0432-s2.0-849454065522-s2.0-84945406552.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Soft Computing Journal1,199info:eu-repo/semantics/openAccess2024-04-23T16:10:41Zoai:repositorio.unesp.br:11449/177563Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:40:04.288720Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fine-tuning Deep Belief Networks using Harmony Search
title Fine-tuning Deep Belief Networks using Harmony Search
spellingShingle Fine-tuning Deep Belief Networks using Harmony Search
Papa, João Paulo [UNESP]
Deep Belief Networks
Harmony Search
Meta-heuristics
Restricted Boltzmann Machines
title_short Fine-tuning Deep Belief Networks using Harmony Search
title_full Fine-tuning Deep Belief Networks using Harmony Search
title_fullStr Fine-tuning Deep Belief Networks using Harmony Search
title_full_unstemmed Fine-tuning Deep Belief Networks using Harmony Search
title_sort Fine-tuning Deep Belief Networks using Harmony Search
author Papa, João Paulo [UNESP]
author_facet Papa, João Paulo [UNESP]
Scheirer, Walter
Cox, David Daniel
author_role author
author2 Scheirer, Walter
Cox, David Daniel
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Center for Brain Science
dc.contributor.author.fl_str_mv Papa, João Paulo [UNESP]
Scheirer, Walter
Cox, David Daniel
dc.subject.por.fl_str_mv Deep Belief Networks
Harmony Search
Meta-heuristics
Restricted Boltzmann Machines
topic Deep Belief Networks
Harmony Search
Meta-heuristics
Restricted Boltzmann Machines
description In this paper, we deal with the problem of Deep Belief Networks (DBNs) parameters fine-tuning by means of a fast meta-heuristic approach named Harmony Search (HS). Although such deep learning-based technique has been widely used in the last years, more detailed studies about how to set its parameters may not be observed in the literature. We have shown we can obtain more accurate results comparing HS against with several of its variants, a random search and two variants of the well-known Hyperopt library. The experimental results were carried out in two public datasets considering the task of binary image reconstruction, three DBN learning algorithms and three layers.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-01
2018-12-11T17:25:59Z
2018-12-11T17:25:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.asoc.2015.08.043
Applied Soft Computing Journal, v. 46, p. 875-885.
1568-4946
http://hdl.handle.net/11449/177563
10.1016/j.asoc.2015.08.043
2-s2.0-84945406552
2-s2.0-84945406552.pdf
url http://dx.doi.org/10.1016/j.asoc.2015.08.043
http://hdl.handle.net/11449/177563
identifier_str_mv Applied Soft Computing Journal, v. 46, p. 875-885.
1568-4946
10.1016/j.asoc.2015.08.043
2-s2.0-84945406552
2-s2.0-84945406552.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Soft Computing Journal
1,199
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 875-885
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128262810894336