On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.3390/math8071161 http://hdl.handle.net/11449/200816 |
Resumo: | We study an energy-dependent potential related to the Rosen-Morse potential. We give in closed-form the expression of a system of eigenfunctions of the Schrodinger operator in terms of a class of functions associated to a family of hypergeometric para-orthogonal polynomials on the unit circle. We also present modified relations of orthogonality and an asymptotic formula. Consequently, bound state solutions can be obtained for some values of the parameters that define the model. As a particular case, we obtain the symmetric trigonometric Rosen-Morse potential for which there exists an orthogonal basis of eigenstates in a Hilbert space. By comparing the existent solutions for the symmetric trigonometric Rosen-Morse potential, an identity involving Gegenbauer polynomials is obtained. |
id |
UNSP_b9f8249c6093070437fd0f8c4a1234eb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/200816 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circleAsymptotic expansionsEnergy-dependent potentialHypergeometric functionsOrdinary differential equationsOrthogonal polynomialsSchrödinger equationWe study an energy-dependent potential related to the Rosen-Morse potential. We give in closed-form the expression of a system of eigenfunctions of the Schrodinger operator in terms of a class of functions associated to a family of hypergeometric para-orthogonal polynomials on the unit circle. We also present modified relations of orthogonality and an asymptotic formula. Consequently, bound state solutions can be obtained for some values of the parameters that define the model. As a particular case, we obtain the symmetric trigonometric Rosen-Morse potential for which there exists an orthogonal basis of eigenstates in a Hilbert space. By comparing the existent solutions for the symmetric trigonometric Rosen-Morse potential, an identity involving Gegenbauer polynomials is obtained.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Matemática Campus Santa Cruz da Serra UFRJ-Universidade Federal do Rio de JaneiroDepartamento de Matemática Campus São José do Rio Preto UNESP-Universidade Estadual PaulistaDepartamento de Matemática Campus São José do Rio Preto UNESP-Universidade Estadual PaulistaFAPESP: 2016/09906-0CNPq: 304087/2018-1CNPq: 402939/2016-6Universidade Federal do Rio de Janeiro (UFRJ)Universidade Estadual Paulista (Unesp)Borrego-Morell, Jorge A.Bracciali, Cleonice F. [UNESP]Ranga, Alagacone Sri [UNESP]2020-12-12T02:16:50Z2020-12-12T02:16:50Z2020-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.3390/math8071161Mathematics, v. 8, n. 7, 2020.2227-7390http://hdl.handle.net/11449/20081610.3390/math80711612-s2.0-8508859184783003224526224670000-0002-6823-4204Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMathematicsinfo:eu-repo/semantics/openAccess2022-02-09T11:14:44Zoai:repositorio.unesp.br:11449/200816Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:24:53.575466Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle |
title |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle |
spellingShingle |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle Borrego-Morell, Jorge A. Asymptotic expansions Energy-dependent potential Hypergeometric functions Ordinary differential equations Orthogonal polynomials Schrödinger equation |
title_short |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle |
title_full |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle |
title_fullStr |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle |
title_full_unstemmed |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle |
title_sort |
On an energy-dependent quantum system with solutions in terms of a class of hypergeometric para-orthogonal polynomials on the unit circle |
author |
Borrego-Morell, Jorge A. |
author_facet |
Borrego-Morell, Jorge A. Bracciali, Cleonice F. [UNESP] Ranga, Alagacone Sri [UNESP] |
author_role |
author |
author2 |
Bracciali, Cleonice F. [UNESP] Ranga, Alagacone Sri [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal do Rio de Janeiro (UFRJ) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Borrego-Morell, Jorge A. Bracciali, Cleonice F. [UNESP] Ranga, Alagacone Sri [UNESP] |
dc.subject.por.fl_str_mv |
Asymptotic expansions Energy-dependent potential Hypergeometric functions Ordinary differential equations Orthogonal polynomials Schrödinger equation |
topic |
Asymptotic expansions Energy-dependent potential Hypergeometric functions Ordinary differential equations Orthogonal polynomials Schrödinger equation |
description |
We study an energy-dependent potential related to the Rosen-Morse potential. We give in closed-form the expression of a system of eigenfunctions of the Schrodinger operator in terms of a class of functions associated to a family of hypergeometric para-orthogonal polynomials on the unit circle. We also present modified relations of orthogonality and an asymptotic formula. Consequently, bound state solutions can be obtained for some values of the parameters that define the model. As a particular case, we obtain the symmetric trigonometric Rosen-Morse potential for which there exists an orthogonal basis of eigenstates in a Hilbert space. By comparing the existent solutions for the symmetric trigonometric Rosen-Morse potential, an identity involving Gegenbauer polynomials is obtained. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:16:50Z 2020-12-12T02:16:50Z 2020-07-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/math8071161 Mathematics, v. 8, n. 7, 2020. 2227-7390 http://hdl.handle.net/11449/200816 10.3390/math8071161 2-s2.0-85088591847 8300322452622467 0000-0002-6823-4204 |
url |
http://dx.doi.org/10.3390/math8071161 http://hdl.handle.net/11449/200816 |
identifier_str_mv |
Mathematics, v. 8, n. 7, 2020. 2227-7390 10.3390/math8071161 2-s2.0-85088591847 8300322452622467 0000-0002-6823-4204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128646244728832 |