Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.amc.2020.125106 http://hdl.handle.net/11449/209527 |
Resumo: | We focus here on using a Newtonian velocity field to evaluate numerical schemes for two different formulations of viscoelastic flow. The two distinct formulations we consider, correspond to either using a fixed basis for the elastic stress or one that uses the flow directions or streamlines. The former is the traditional Cartesian stress formulation, whilst the later may be referred to as the natural stress formulation of the equations. We choose the Oldroyd-B fluid and three benchmarks in computational rheology: the 4:1 contraction flow, the stick-slip and cross-slot problems. In the context of the contraction flow, fixing the kinematics as Newtonian, actually gives a larger stress singularity at the re-entrant corner, the matched asymptotics of which are presented here. Numerical results for temporal and spatial convergence of the two formulations are compared first in this decoupled velocity and elastic stress situation, to assess the performance of the two approaches. This may be regarded as an intermediate test case before proceeding to the far more difficult fully coupled velocity and stress situation. We also present comparison results between numerics and asymptotics for the stick-slip problem. Finally, the natural stress formulation is used to investigate the cross-slot problem, again in a Newtonian velocity field. (C) 2020 Elsevier Inc. All rights reserved. |
id |
UNSP_baa67c24df93bb6ee9eec812f3b7d39c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/209527 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematicsMatched asymptoticsStress singularityBoundary layersOldroyd-B fluidNumerical verificationWe focus here on using a Newtonian velocity field to evaluate numerical schemes for two different formulations of viscoelastic flow. The two distinct formulations we consider, correspond to either using a fixed basis for the elastic stress or one that uses the flow directions or streamlines. The former is the traditional Cartesian stress formulation, whilst the later may be referred to as the natural stress formulation of the equations. We choose the Oldroyd-B fluid and three benchmarks in computational rheology: the 4:1 contraction flow, the stick-slip and cross-slot problems. In the context of the contraction flow, fixing the kinematics as Newtonian, actually gives a larger stress singularity at the re-entrant corner, the matched asymptotics of which are presented here. Numerical results for temporal and spatial convergence of the two formulations are compared first in this decoupled velocity and elastic stress situation, to assess the performance of the two approaches. This may be regarded as an intermediate test case before proceeding to the far more difficult fully coupled velocity and stress situation. We also present comparison results between numerics and asymptotics for the stick-slip problem. Finally, the natural stress formulation is used to investigate the cross-slot problem, again in a Newtonian velocity field. (C) 2020 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)BEPEUniv Bath, Dept Math Sci, Bath BA2 7AY, Avon, EnglandUniv Sao Paulo, Inst Ciencias Matemat & Comp, Sao Carlos, BrazilUniv Estadual Paulista, Dept Matemat & Comp, Presidente Prudente, BrazilUniv Estadual Paulista, Dept Matemat & Comp, Presidente Prudente, BrazilFAPESP: 2018/22242-0CNPq: 307459/2016-0FAPESP: 2013/07375-0FAPESP: 2019/01811-9FAPESP: 2014/17348-2BEPE: 2016/20389-8Elsevier B.V.Univ BathUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Evans, J. D.Franca, H. L.Palhares Junior, I. L. [UNESP]Oishi, C. M. [UNESP]2021-06-25T12:21:14Z2021-06-25T12:21:14Z2020-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article32http://dx.doi.org/10.1016/j.amc.2020.125106Applied Mathematics And Computation. New York: Elsevier Science Inc, v. 387, 32 p., 2020.0096-3003http://hdl.handle.net/11449/20952710.1016/j.amc.2020.125106WOS:000576703700009Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics And Computationinfo:eu-repo/semantics/openAccess2024-06-19T14:31:50Zoai:repositorio.unesp.br:11449/209527Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:34:56.317362Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics |
title |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics |
spellingShingle |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics Evans, J. D. Matched asymptotics Stress singularity Boundary layers Oldroyd-B fluid Numerical verification |
title_short |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics |
title_full |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics |
title_fullStr |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics |
title_full_unstemmed |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics |
title_sort |
Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics |
author |
Evans, J. D. |
author_facet |
Evans, J. D. Franca, H. L. Palhares Junior, I. L. [UNESP] Oishi, C. M. [UNESP] |
author_role |
author |
author2 |
Franca, H. L. Palhares Junior, I. L. [UNESP] Oishi, C. M. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Univ Bath Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Evans, J. D. Franca, H. L. Palhares Junior, I. L. [UNESP] Oishi, C. M. [UNESP] |
dc.subject.por.fl_str_mv |
Matched asymptotics Stress singularity Boundary layers Oldroyd-B fluid Numerical verification |
topic |
Matched asymptotics Stress singularity Boundary layers Oldroyd-B fluid Numerical verification |
description |
We focus here on using a Newtonian velocity field to evaluate numerical schemes for two different formulations of viscoelastic flow. The two distinct formulations we consider, correspond to either using a fixed basis for the elastic stress or one that uses the flow directions or streamlines. The former is the traditional Cartesian stress formulation, whilst the later may be referred to as the natural stress formulation of the equations. We choose the Oldroyd-B fluid and three benchmarks in computational rheology: the 4:1 contraction flow, the stick-slip and cross-slot problems. In the context of the contraction flow, fixing the kinematics as Newtonian, actually gives a larger stress singularity at the re-entrant corner, the matched asymptotics of which are presented here. Numerical results for temporal and spatial convergence of the two formulations are compared first in this decoupled velocity and elastic stress situation, to assess the performance of the two approaches. This may be regarded as an intermediate test case before proceeding to the far more difficult fully coupled velocity and stress situation. We also present comparison results between numerics and asymptotics for the stick-slip problem. Finally, the natural stress formulation is used to investigate the cross-slot problem, again in a Newtonian velocity field. (C) 2020 Elsevier Inc. All rights reserved. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-15 2021-06-25T12:21:14Z 2021-06-25T12:21:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.amc.2020.125106 Applied Mathematics And Computation. New York: Elsevier Science Inc, v. 387, 32 p., 2020. 0096-3003 http://hdl.handle.net/11449/209527 10.1016/j.amc.2020.125106 WOS:000576703700009 |
url |
http://dx.doi.org/10.1016/j.amc.2020.125106 http://hdl.handle.net/11449/209527 |
identifier_str_mv |
Applied Mathematics And Computation. New York: Elsevier Science Inc, v. 387, 32 p., 2020. 0096-3003 10.1016/j.amc.2020.125106 WOS:000576703700009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Mathematics And Computation |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
32 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128383097241600 |