Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics

Detalhes bibliográficos
Autor(a) principal: Evans, J. D.
Data de Publicação: 2020
Outros Autores: Franca, H. L., Palhares Junior, I. L. [UNESP], Oishi, C. M. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.amc.2020.125106
http://hdl.handle.net/11449/209527
Resumo: We focus here on using a Newtonian velocity field to evaluate numerical schemes for two different formulations of viscoelastic flow. The two distinct formulations we consider, correspond to either using a fixed basis for the elastic stress or one that uses the flow directions or streamlines. The former is the traditional Cartesian stress formulation, whilst the later may be referred to as the natural stress formulation of the equations. We choose the Oldroyd-B fluid and three benchmarks in computational rheology: the 4:1 contraction flow, the stick-slip and cross-slot problems. In the context of the contraction flow, fixing the kinematics as Newtonian, actually gives a larger stress singularity at the re-entrant corner, the matched asymptotics of which are presented here. Numerical results for temporal and spatial convergence of the two formulations are compared first in this decoupled velocity and elastic stress situation, to assess the performance of the two approaches. This may be regarded as an intermediate test case before proceeding to the far more difficult fully coupled velocity and stress situation. We also present comparison results between numerics and asymptotics for the stick-slip problem. Finally, the natural stress formulation is used to investigate the cross-slot problem, again in a Newtonian velocity field. (C) 2020 Elsevier Inc. All rights reserved.
id UNSP_baa67c24df93bb6ee9eec812f3b7d39c
oai_identifier_str oai:repositorio.unesp.br:11449/209527
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematicsMatched asymptoticsStress singularityBoundary layersOldroyd-B fluidNumerical verificationWe focus here on using a Newtonian velocity field to evaluate numerical schemes for two different formulations of viscoelastic flow. The two distinct formulations we consider, correspond to either using a fixed basis for the elastic stress or one that uses the flow directions or streamlines. The former is the traditional Cartesian stress formulation, whilst the later may be referred to as the natural stress formulation of the equations. We choose the Oldroyd-B fluid and three benchmarks in computational rheology: the 4:1 contraction flow, the stick-slip and cross-slot problems. In the context of the contraction flow, fixing the kinematics as Newtonian, actually gives a larger stress singularity at the re-entrant corner, the matched asymptotics of which are presented here. Numerical results for temporal and spatial convergence of the two formulations are compared first in this decoupled velocity and elastic stress situation, to assess the performance of the two approaches. This may be regarded as an intermediate test case before proceeding to the far more difficult fully coupled velocity and stress situation. We also present comparison results between numerics and asymptotics for the stick-slip problem. Finally, the natural stress formulation is used to investigate the cross-slot problem, again in a Newtonian velocity field. (C) 2020 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)BEPEUniv Bath, Dept Math Sci, Bath BA2 7AY, Avon, EnglandUniv Sao Paulo, Inst Ciencias Matemat & Comp, Sao Carlos, BrazilUniv Estadual Paulista, Dept Matemat & Comp, Presidente Prudente, BrazilUniv Estadual Paulista, Dept Matemat & Comp, Presidente Prudente, BrazilFAPESP: 2018/22242-0CNPq: 307459/2016-0FAPESP: 2013/07375-0FAPESP: 2019/01811-9FAPESP: 2014/17348-2BEPE: 2016/20389-8Elsevier B.V.Univ BathUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Evans, J. D.Franca, H. L.Palhares Junior, I. L. [UNESP]Oishi, C. M. [UNESP]2021-06-25T12:21:14Z2021-06-25T12:21:14Z2020-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article32http://dx.doi.org/10.1016/j.amc.2020.125106Applied Mathematics And Computation. New York: Elsevier Science Inc, v. 387, 32 p., 2020.0096-3003http://hdl.handle.net/11449/20952710.1016/j.amc.2020.125106WOS:000576703700009Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics And Computationinfo:eu-repo/semantics/openAccess2024-06-19T14:31:50Zoai:repositorio.unesp.br:11449/209527Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:34:56.317362Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
title Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
spellingShingle Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
Evans, J. D.
Matched asymptotics
Stress singularity
Boundary layers
Oldroyd-B fluid
Numerical verification
title_short Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
title_full Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
title_fullStr Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
title_full_unstemmed Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
title_sort Testing viscoelastic numerical schemes using the Oldroyd-B fluid in Newtonian kinematics
author Evans, J. D.
author_facet Evans, J. D.
Franca, H. L.
Palhares Junior, I. L. [UNESP]
Oishi, C. M. [UNESP]
author_role author
author2 Franca, H. L.
Palhares Junior, I. L. [UNESP]
Oishi, C. M. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Univ Bath
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Evans, J. D.
Franca, H. L.
Palhares Junior, I. L. [UNESP]
Oishi, C. M. [UNESP]
dc.subject.por.fl_str_mv Matched asymptotics
Stress singularity
Boundary layers
Oldroyd-B fluid
Numerical verification
topic Matched asymptotics
Stress singularity
Boundary layers
Oldroyd-B fluid
Numerical verification
description We focus here on using a Newtonian velocity field to evaluate numerical schemes for two different formulations of viscoelastic flow. The two distinct formulations we consider, correspond to either using a fixed basis for the elastic stress or one that uses the flow directions or streamlines. The former is the traditional Cartesian stress formulation, whilst the later may be referred to as the natural stress formulation of the equations. We choose the Oldroyd-B fluid and three benchmarks in computational rheology: the 4:1 contraction flow, the stick-slip and cross-slot problems. In the context of the contraction flow, fixing the kinematics as Newtonian, actually gives a larger stress singularity at the re-entrant corner, the matched asymptotics of which are presented here. Numerical results for temporal and spatial convergence of the two formulations are compared first in this decoupled velocity and elastic stress situation, to assess the performance of the two approaches. This may be regarded as an intermediate test case before proceeding to the far more difficult fully coupled velocity and stress situation. We also present comparison results between numerics and asymptotics for the stick-slip problem. Finally, the natural stress formulation is used to investigate the cross-slot problem, again in a Newtonian velocity field. (C) 2020 Elsevier Inc. All rights reserved.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-15
2021-06-25T12:21:14Z
2021-06-25T12:21:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.amc.2020.125106
Applied Mathematics And Computation. New York: Elsevier Science Inc, v. 387, 32 p., 2020.
0096-3003
http://hdl.handle.net/11449/209527
10.1016/j.amc.2020.125106
WOS:000576703700009
url http://dx.doi.org/10.1016/j.amc.2020.125106
http://hdl.handle.net/11449/209527
identifier_str_mv Applied Mathematics And Computation. New York: Elsevier Science Inc, v. 387, 32 p., 2020.
0096-3003
10.1016/j.amc.2020.125106
WOS:000576703700009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Mathematics And Computation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 32
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128383097241600