Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals

Detalhes bibliográficos
Autor(a) principal: Maturi, Fernando Eduardo
Data de Publicação: 2024
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: https://hdl.handle.net/11449/253423
Resumo: Although water is the most commonly used liquid, it is one of the most intriguing substances on planet Earth. This is because, despite having a simple chemical composition and molecular structure, liquid water exhibits an extraordinarily complex behavior when subjected to variations in temperature and pressure, setting it apart from other commonly used liquids. These anomalies in the behavior of water are easily observed under supercooling conditions, where water is cooled to temperatures below its freezing point, remaining in the liquid phase, thus revealing the existence of two distinct liquid states. While considered a remarkable explanation for the occurrence of its anomalous properties, the coexistence of these two liquid states of water is difficult to prove under normal conditions of temperature and pressure. This requires the development of new experimental approaches to investigate the peculiar characteristics of water that make life as we know it possible on our planet. Since the transition between the structures of the two liquid states of water occurs at a local level, the use of techniques capable of observing fluctuations in microscopic events is required. Therefore, this doctoral research work employs the technique of luminescence thermometry as a powerful tool to identify fluctuations between two types of hydrogen bond organizations in water molecules arranged around the surface of Brownian nanoparticles. The obtained results reveal that, in addition to identifying low and high-density liquid domains, the delicate balance between the coexistence of these different water domains is strongly influenced by the size of the nanoparticles and the pH of the aqueous medium, respectively corresponding to variations in temperature and pressure in a newly proposed hypothetical phase diagram of water.
id UNSP_bb0a41bfcf2d93ebfde2e115ad67bc25
oai_identifier_str oai:repositorio.unesp.br:11449/253423
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystalsEstudo da anomalia estrutural da água líquida usando termometria por conversão ascendente de energia de nanopartículas BrownianasÁguaAnomaliasLuminescênciaMovimentos brownianosTermômetro e termometriaWaterAnomaliesLuminescenceBrownian movementsThermometer and thermometryAlthough water is the most commonly used liquid, it is one of the most intriguing substances on planet Earth. This is because, despite having a simple chemical composition and molecular structure, liquid water exhibits an extraordinarily complex behavior when subjected to variations in temperature and pressure, setting it apart from other commonly used liquids. These anomalies in the behavior of water are easily observed under supercooling conditions, where water is cooled to temperatures below its freezing point, remaining in the liquid phase, thus revealing the existence of two distinct liquid states. While considered a remarkable explanation for the occurrence of its anomalous properties, the coexistence of these two liquid states of water is difficult to prove under normal conditions of temperature and pressure. This requires the development of new experimental approaches to investigate the peculiar characteristics of water that make life as we know it possible on our planet. Since the transition between the structures of the two liquid states of water occurs at a local level, the use of techniques capable of observing fluctuations in microscopic events is required. Therefore, this doctoral research work employs the technique of luminescence thermometry as a powerful tool to identify fluctuations between two types of hydrogen bond organizations in water molecules arranged around the surface of Brownian nanoparticles. The obtained results reveal that, in addition to identifying low and high-density liquid domains, the delicate balance between the coexistence of these different water domains is strongly influenced by the size of the nanoparticles and the pH of the aqueous medium, respectively corresponding to variations in temperature and pressure in a newly proposed hypothetical phase diagram of water.Embora seja o líquido mais utilizado, a água é uma das substâncias mais intrigantes do planeta Terra. Isso ocorre porque, apesar de apresentar composição química e estrutura molecular simples, a água líquida revela um comportamento extraordinariamente complexo quando sujeita a variações de temperatura e pressão, o que a distingue de outros líquidos comumente utilizados. Essas anomalias no comportamento da água são facilmente observadas em condições de super resfriamento, quando a água é resfriada a temperaturas abaixo do seu ponto de congelamento, mantendo-se na fase líquida, e, revelando assim a existência de dois estados líquidos distintos. Apesar de considerada uma explicação notável para a ocorrência de suas propriedades anômalas, a coexistência desses dois estados líquidos da água é difícil de comprovar em condições normais de temperatura e pressão. Isso exige o desenvolvimento de novas abordagens experimentais para investigar as características peculiares da água que tornam a vida como conhecermos possível em nosso planeta. Dado que a transição entre as estruturas dos dois estados líquidos da água ocorre em nível local, é necessária então a utilização de técnicas capazes de observar as flutuações de eventos microscópicos. Portanto, este trabalho de doutorado emprega a técnica de termometria de luminescência como uma ferramenta poderosa para identificar flutuações entre dois tipos de organização de ligações de hidrogênio em moléculas de água dispostas ao redor da superfície de nanopartículas Brownianas. Os resultados obtidos revelam que, além de ser possível identificar domínios líquidos de baixa e alta densidade, o equilíbrio delicado entre a coexistência desses diferentes domínios de água é fortemente influenciado pelo tamanho das nanopartículas e pelo pH do meio aquoso, correspondendo, respetivamente, às variações de temperatura e pressão em um novo diagrama hipotético de fases da água proposto recentemente.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para a Ciência e a Tecnologia (FCT)OutraCNPq: 142566/2018-7FCT: UI/BD/151445/2021Marie Skłodowska-Curie: 823941Universidade Estadual Paulista (Unesp)Ribeiro, Sidney José Lima [UNESP]Universidade de AveiroCarlos, Luís António Martins Dias FerreiraMaturi, Fernando Eduardo2024-02-23T17:00:53Z2024-02-23T17:00:53Z2024-01-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/11449/253423enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-02-24T06:02:58Zoai:repositorio.unesp.br:11449/253423Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:00:51.264528Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
Estudo da anomalia estrutural da água líquida usando termometria por conversão ascendente de energia de nanopartículas Brownianas
title Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
spellingShingle Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
Maturi, Fernando Eduardo
Água
Anomalias
Luminescência
Movimentos brownianos
Termômetro e termometria
Water
Anomalies
Luminescence
Brownian movements
Thermometer and thermometry
title_short Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
title_full Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
title_fullStr Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
title_full_unstemmed Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
title_sort Study of the structural anomaly of liquid water using upconverting thermometry of Brownian nanocrystals
author Maturi, Fernando Eduardo
author_facet Maturi, Fernando Eduardo
author_role author
dc.contributor.none.fl_str_mv Ribeiro, Sidney José Lima [UNESP]
Universidade de Aveiro
Carlos, Luís António Martins Dias Ferreira
dc.contributor.author.fl_str_mv Maturi, Fernando Eduardo
dc.subject.por.fl_str_mv Água
Anomalias
Luminescência
Movimentos brownianos
Termômetro e termometria
Water
Anomalies
Luminescence
Brownian movements
Thermometer and thermometry
topic Água
Anomalias
Luminescência
Movimentos brownianos
Termômetro e termometria
Water
Anomalies
Luminescence
Brownian movements
Thermometer and thermometry
description Although water is the most commonly used liquid, it is one of the most intriguing substances on planet Earth. This is because, despite having a simple chemical composition and molecular structure, liquid water exhibits an extraordinarily complex behavior when subjected to variations in temperature and pressure, setting it apart from other commonly used liquids. These anomalies in the behavior of water are easily observed under supercooling conditions, where water is cooled to temperatures below its freezing point, remaining in the liquid phase, thus revealing the existence of two distinct liquid states. While considered a remarkable explanation for the occurrence of its anomalous properties, the coexistence of these two liquid states of water is difficult to prove under normal conditions of temperature and pressure. This requires the development of new experimental approaches to investigate the peculiar characteristics of water that make life as we know it possible on our planet. Since the transition between the structures of the two liquid states of water occurs at a local level, the use of techniques capable of observing fluctuations in microscopic events is required. Therefore, this doctoral research work employs the technique of luminescence thermometry as a powerful tool to identify fluctuations between two types of hydrogen bond organizations in water molecules arranged around the surface of Brownian nanoparticles. The obtained results reveal that, in addition to identifying low and high-density liquid domains, the delicate balance between the coexistence of these different water domains is strongly influenced by the size of the nanoparticles and the pH of the aqueous medium, respectively corresponding to variations in temperature and pressure in a newly proposed hypothetical phase diagram of water.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-23T17:00:53Z
2024-02-23T17:00:53Z
2024-01-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/11449/253423
url https://hdl.handle.net/11449/253423
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128446573838336