Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial

Detalhes bibliográficos
Autor(a) principal: Brigante, Gianpedro Robertto Mella
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/217390
Resumo: In this work, two methods of multivariate analysis were adopted, Principal Component Analysis and Cluster Analysis, with the aim of analyzing the performance, taking into account variables related to the attack of the main athletes of the five biggest national championships, namely: the Brasileirão Serie A, La Liga, Serie A Italia, Premier League and France Ligue. The Principal Component Analysis method was used to reduce the number of variables and simplify the players’ interpretation, in addition to providing the performance scores of each analyzed athlete. This application was very effective as it managed to extract about 84% of the information from eight correlated variables into two new uncorrelated variables. With this model it was also possible to make Biplot graphs that helped to identify the players who stood out the most in each variable due to the scores obtained. The performance of players by championship was also analyzed, allowing the comparison of these studied competitions. After obtaining the performance scores, a grouping method called Ward’s Method was used, which groups the individuals (athletes) according to their proximity according to the data, then the quality of these groups was observed by the silhouette graph that makes it possible to see if the player is well placed in his group. Making the grouping taking into account only the scores of the two components chosen, it was noticed that it was not possible to find a strong structure of the groups, but the groups were consistent with the interpretations obtained in the Biplot graphs.
id UNSP_bb1b96d354f01885ebaa49b4263f822b
oai_identifier_str oai:repositorio.unesp.br:11449/217390
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundialMultivariate analysis applied in the construction of productivity scores of the main players of world footballSoccerMultivariate analysisPerformancePrincipal componentsWard’s methodFutebolAnálise multivariadaScoreRendimentoComponentes principaisMétodo de WardAnálise de agrupamentosAnálise de componente principaisIn this work, two methods of multivariate analysis were adopted, Principal Component Analysis and Cluster Analysis, with the aim of analyzing the performance, taking into account variables related to the attack of the main athletes of the five biggest national championships, namely: the Brasileirão Serie A, La Liga, Serie A Italia, Premier League and France Ligue. The Principal Component Analysis method was used to reduce the number of variables and simplify the players’ interpretation, in addition to providing the performance scores of each analyzed athlete. This application was very effective as it managed to extract about 84% of the information from eight correlated variables into two new uncorrelated variables. With this model it was also possible to make Biplot graphs that helped to identify the players who stood out the most in each variable due to the scores obtained. The performance of players by championship was also analyzed, allowing the comparison of these studied competitions. After obtaining the performance scores, a grouping method called Ward’s Method was used, which groups the individuals (athletes) according to their proximity according to the data, then the quality of these groups was observed by the silhouette graph that makes it possible to see if the player is well placed in his group. Making the grouping taking into account only the scores of the two components chosen, it was noticed that it was not possible to find a strong structure of the groups, but the groups were consistent with the interpretations obtained in the Biplot graphs.Neste trabalho foram adotados dois métodos de análise multivariada, a Análise de Componentes Principais e a Análise de Agrupamentos, com o intúito de analisar o rendimento, tendo em consideração variáveis relacionadas ao ataque dos principais atletas dos cinco maiores campeonatos nacionais, sendo eles: o Campeonato Brasileirão Série A, La Liga, Série A Italia, Premier League e France Ligue. O método de Análise de Componentes Principais foi usado para diminuir a quantidade de variáveis e simplificar a interpretação dos jogadores, além de proporcionar os scores de rendimento de cada atleta analisado. Esta aplicação foi muito efetiva pois conseguiu extrair cerca de 84% da informação de oito variaveis correlacionadas em duas novas variaveis não correlacionadas. Com esse modelo também foi possível fazer gráficos Biplot que ajudaram a identificar os jogadores que mais se destacaram em cada variavel devido aos scores obtidos. Também foi analisado o desempenho dos jogadores por campeonato possibilitando a comparação dessas competições estudadas. Após a obtenção dos scores de rendimento foi usado um método de agrupamento denominado Método de Ward, que agrupa os indivíduos (atletas) conforme suas proximidades de acordo com os dados, depois a qualidade desses grupos foram observadas pelo gráfico da silhueta que possibilita ver se o jogador está bem alocado em seu grupo. Fazendo o agrupamento levando em conta somente os scores das duas componentes escolhidas percebeu-se que não foi possível encontrar uma forte estrutura dos grupos, mas os grupos foram condizentes às interpretações obtidas nos gráficos Biplot.Não recebi financiamentoUniversidade Estadual Paulista (Unesp)Silvestre, Miriam Rodrigues [UNESP]Universidade Estadual Paulista (Unesp)Brigante, Gianpedro Robertto Mella2022-03-25T16:18:07Z2022-03-25T16:18:07Z2022-03-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfhttp://hdl.handle.net/11449/217390porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2023-12-02T06:12:45Zoai:repositorio.unesp.br:11449/217390Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:17:21.887895Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
Multivariate analysis applied in the construction of productivity scores of the main players of world football
title Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
spellingShingle Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
Brigante, Gianpedro Robertto Mella
Soccer
Multivariate analysis
Performance
Principal components
Ward’s method
Futebol
Análise multivariada
Score
Rendimento
Componentes principais
Método de Ward
Análise de agrupamentos
Análise de componente principais
title_short Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
title_full Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
title_fullStr Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
title_full_unstemmed Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
title_sort Análise multivariada aplicada na construção de scores de rendimento dos principais jogadores do futebol mundial
author Brigante, Gianpedro Robertto Mella
author_facet Brigante, Gianpedro Robertto Mella
author_role author
dc.contributor.none.fl_str_mv Silvestre, Miriam Rodrigues [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Brigante, Gianpedro Robertto Mella
dc.subject.por.fl_str_mv Soccer
Multivariate analysis
Performance
Principal components
Ward’s method
Futebol
Análise multivariada
Score
Rendimento
Componentes principais
Método de Ward
Análise de agrupamentos
Análise de componente principais
topic Soccer
Multivariate analysis
Performance
Principal components
Ward’s method
Futebol
Análise multivariada
Score
Rendimento
Componentes principais
Método de Ward
Análise de agrupamentos
Análise de componente principais
description In this work, two methods of multivariate analysis were adopted, Principal Component Analysis and Cluster Analysis, with the aim of analyzing the performance, taking into account variables related to the attack of the main athletes of the five biggest national championships, namely: the Brasileirão Serie A, La Liga, Serie A Italia, Premier League and France Ligue. The Principal Component Analysis method was used to reduce the number of variables and simplify the players’ interpretation, in addition to providing the performance scores of each analyzed athlete. This application was very effective as it managed to extract about 84% of the information from eight correlated variables into two new uncorrelated variables. With this model it was also possible to make Biplot graphs that helped to identify the players who stood out the most in each variable due to the scores obtained. The performance of players by championship was also analyzed, allowing the comparison of these studied competitions. After obtaining the performance scores, a grouping method called Ward’s Method was used, which groups the individuals (athletes) according to their proximity according to the data, then the quality of these groups was observed by the silhouette graph that makes it possible to see if the player is well placed in his group. Making the grouping taking into account only the scores of the two components chosen, it was noticed that it was not possible to find a strong structure of the groups, but the groups were consistent with the interpretations obtained in the Biplot graphs.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-25T16:18:07Z
2022-03-25T16:18:07Z
2022-03-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/217390
url http://hdl.handle.net/11449/217390
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129047256891392