Estimating the mechanical competence parameter of the trabecular bone: A neural network approach

Detalhes bibliográficos
Autor(a) principal: Filletti, Érica Regina [UNESP]
Data de Publicação: 2016
Outros Autores: Roque, Waldir Leite
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/2446-4740.05615
http://hdl.handle.net/11449/173359
Resumo: Introduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.
id UNSP_bc05c460255b0d415599c26c4609f6b8
oai_identifier_str oai:repositorio.unesp.br:11449/173359
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Estimating the mechanical competence parameter of the trabecular bone: A neural network approachArtificial neural networkMachine learningMechanical competenceOsteoporosisTrabecular boneIntroduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.Departamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro QuitandinhaDepartamento de Computação Científica Centro de Informática Universidade Federal da Paraíba - UFPBDepartamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro QuitandinhaUniversidade Estadual Paulista (Unesp)Universidade Federal da Paraíba (UFPB)Filletti, Érica Regina [UNESP]Roque, Waldir Leite2018-12-11T17:04:49Z2018-12-11T17:04:49Z2016-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article137-143application/pdfhttp://dx.doi.org/10.1590/2446-4740.05615Revista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016.1984-77421517-3151http://hdl.handle.net/11449/17335910.1590/2446-4740.05615S2446-474020160002001372-s2.0-84982291660S2446-47402016000200137.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Engenharia Biomedica0,179info:eu-repo/semantics/openAccess2024-01-02T06:19:20Zoai:repositorio.unesp.br:11449/173359Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:55:39.450806Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
title Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
spellingShingle Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
Filletti, Érica Regina [UNESP]
Artificial neural network
Machine learning
Mechanical competence
Osteoporosis
Trabecular bone
title_short Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
title_full Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
title_fullStr Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
title_full_unstemmed Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
title_sort Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
author Filletti, Érica Regina [UNESP]
author_facet Filletti, Érica Regina [UNESP]
Roque, Waldir Leite
author_role author
author2 Roque, Waldir Leite
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal da Paraíba (UFPB)
dc.contributor.author.fl_str_mv Filletti, Érica Regina [UNESP]
Roque, Waldir Leite
dc.subject.por.fl_str_mv Artificial neural network
Machine learning
Mechanical competence
Osteoporosis
Trabecular bone
topic Artificial neural network
Machine learning
Mechanical competence
Osteoporosis
Trabecular bone
description Introduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-01
2018-12-11T17:04:49Z
2018-12-11T17:04:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/2446-4740.05615
Revista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016.
1984-7742
1517-3151
http://hdl.handle.net/11449/173359
10.1590/2446-4740.05615
S2446-47402016000200137
2-s2.0-84982291660
S2446-47402016000200137.pdf
url http://dx.doi.org/10.1590/2446-4740.05615
http://hdl.handle.net/11449/173359
identifier_str_mv Revista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016.
1984-7742
1517-3151
10.1590/2446-4740.05615
S2446-47402016000200137
2-s2.0-84982291660
S2446-47402016000200137.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista Brasileira de Engenharia Biomedica
0,179
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 137-143
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129374374854656