Estimating the mechanical competence parameter of the trabecular bone: A neural network approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/2446-4740.05615 http://hdl.handle.net/11449/173359 |
Resumo: | Introduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP. |
id |
UNSP_bc05c460255b0d415599c26c4609f6b8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/173359 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approachArtificial neural networkMachine learningMechanical competenceOsteoporosisTrabecular boneIntroduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP.Departamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro QuitandinhaDepartamento de Computação Científica Centro de Informática Universidade Federal da Paraíba - UFPBDepartamento de Físico-Química Instituto de Química Universidade Estadual Paulista - UNESP, Rua Prof. Francisco Degni, 55, Bairro QuitandinhaUniversidade Estadual Paulista (Unesp)Universidade Federal da Paraíba (UFPB)Filletti, Érica Regina [UNESP]Roque, Waldir Leite2018-12-11T17:04:49Z2018-12-11T17:04:49Z2016-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article137-143application/pdfhttp://dx.doi.org/10.1590/2446-4740.05615Revista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016.1984-77421517-3151http://hdl.handle.net/11449/17335910.1590/2446-4740.05615S2446-474020160002001372-s2.0-84982291660S2446-47402016000200137.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Engenharia Biomedica0,179info:eu-repo/semantics/openAccess2024-01-02T06:19:20Zoai:repositorio.unesp.br:11449/173359Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:55:39.450806Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach |
title |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach |
spellingShingle |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach Filletti, Érica Regina [UNESP] Artificial neural network Machine learning Mechanical competence Osteoporosis Trabecular bone |
title_short |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach |
title_full |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach |
title_fullStr |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach |
title_full_unstemmed |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach |
title_sort |
Estimating the mechanical competence parameter of the trabecular bone: A neural network approach |
author |
Filletti, Érica Regina [UNESP] |
author_facet |
Filletti, Érica Regina [UNESP] Roque, Waldir Leite |
author_role |
author |
author2 |
Roque, Waldir Leite |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal da Paraíba (UFPB) |
dc.contributor.author.fl_str_mv |
Filletti, Érica Regina [UNESP] Roque, Waldir Leite |
dc.subject.por.fl_str_mv |
Artificial neural network Machine learning Mechanical competence Osteoporosis Trabecular bone |
topic |
Artificial neural network Machine learning Mechanical competence Osteoporosis Trabecular bone |
description |
Introduction: The mechanical competence parameter (MCP) of the trabecular bone is a parameter that merges the volume fraction, connectivity, tortuosity and Young modulus of elasticity, to provide a single measure of the trabecular bone structural quality. Methods: As the MCP is estimated for 3D images and the Young modulus simulations are quite consuming, in this paper, an alternative approach to estimate the MCP based on artificial neural network (ANN) is discussed considering as the training set a group of 23 in vitro vertebrae and 12 distal radius samples obtained by microcomputed tomography (μCT), and 83 in vivo distal radius magnetic resonance image samples (MRI). Results: It is shown that the ANN was able to predict with very high accuracy the MCP for 29 new samples, being 6 vertebrae and 3 distal radius bones by μCT and 20 distal radius bone by MRI. Conclusion: There is a strong correlation (R2= 0.97) between both techniques and, despite the small number of testing samples, the Bland-Altman analysis shows that ANN is within the limits of agreement to estimate the MCP. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-01 2018-12-11T17:04:49Z 2018-12-11T17:04:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/2446-4740.05615 Revista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016. 1984-7742 1517-3151 http://hdl.handle.net/11449/173359 10.1590/2446-4740.05615 S2446-47402016000200137 2-s2.0-84982291660 S2446-47402016000200137.pdf |
url |
http://dx.doi.org/10.1590/2446-4740.05615 http://hdl.handle.net/11449/173359 |
identifier_str_mv |
Revista Brasileira de Engenharia Biomedica, v. 32, n. 2, p. 137-143, 2016. 1984-7742 1517-3151 10.1590/2446-4740.05615 S2446-47402016000200137 2-s2.0-84982291660 S2446-47402016000200137.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Brasileira de Engenharia Biomedica 0,179 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
137-143 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129374374854656 |