A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jat.2021.105604 http://hdl.handle.net/11449/228998 |
Resumo: | This paper deals with orthogonal polynomials and associated connection coefficients with respect to a class of Sobolev inner products on the unit circle. Under certain conditions on the parameters in the inner product it is shown that the connection coefficients are related to a subfamily of the continuous dual Hahn polynomials. Properties regarding bounds and asymptotics are also established with respect to these parameters. Criteria for knowing when the zeros of the (Sobolev) orthogonal polynomials and also the zeros of their derivatives stay within the unit disk have also been addressed. By numerical experiments some further information on the parameters is also found so that the zeros remain within the unit disk. |
id |
UNSP_bcec932fadf02e6bfe5a2f6f9138b89a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/228998 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zerosCircular Jacobi polynomialsContinuous dual Hahn polynomialsSobolev orthogonal polynomials on the unit circleThis paper deals with orthogonal polynomials and associated connection coefficients with respect to a class of Sobolev inner products on the unit circle. Under certain conditions on the parameters in the inner product it is shown that the connection coefficients are related to a subfamily of the continuous dual Hahn polynomials. Properties regarding bounds and asymptotics are also established with respect to these parameters. Criteria for knowing when the zeros of the (Sobolev) orthogonal polynomials and also the zeros of their derivatives stay within the unit disk have also been addressed. By numerical experiments some further information on the parameters is also found so that the zeros remain within the unit disk.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Matemática IBILCE UNESP-Universidade Estadual PaulistaDepartamento de Matemática IBILCE UNESP-Universidade Estadual PaulistaFAPESP: 2016/09906-0FAPESP: 2020/14244-2CNPq: 304087/2018-1Universidade Estadual Paulista (UNESP)Bracciali, Cleonice F. [UNESP]da Silva, Jéssica V. [UNESP]Sri Ranga, A. [UNESP]2022-04-29T08:29:43Z2022-04-29T08:29:43Z2021-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.jat.2021.105604Journal of Approximation Theory, v. 268.1096-04300021-9045http://hdl.handle.net/11449/22899810.1016/j.jat.2021.1056042-s2.0-85108259358Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Approximation Theoryinfo:eu-repo/semantics/openAccess2022-04-29T08:29:44Zoai:repositorio.unesp.br:11449/228998Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:03:41.327639Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros |
title |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros |
spellingShingle |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros Bracciali, Cleonice F. [UNESP] Circular Jacobi polynomials Continuous dual Hahn polynomials Sobolev orthogonal polynomials on the unit circle |
title_short |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros |
title_full |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros |
title_fullStr |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros |
title_full_unstemmed |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros |
title_sort |
A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros |
author |
Bracciali, Cleonice F. [UNESP] |
author_facet |
Bracciali, Cleonice F. [UNESP] da Silva, Jéssica V. [UNESP] Sri Ranga, A. [UNESP] |
author_role |
author |
author2 |
da Silva, Jéssica V. [UNESP] Sri Ranga, A. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Bracciali, Cleonice F. [UNESP] da Silva, Jéssica V. [UNESP] Sri Ranga, A. [UNESP] |
dc.subject.por.fl_str_mv |
Circular Jacobi polynomials Continuous dual Hahn polynomials Sobolev orthogonal polynomials on the unit circle |
topic |
Circular Jacobi polynomials Continuous dual Hahn polynomials Sobolev orthogonal polynomials on the unit circle |
description |
This paper deals with orthogonal polynomials and associated connection coefficients with respect to a class of Sobolev inner products on the unit circle. Under certain conditions on the parameters in the inner product it is shown that the connection coefficients are related to a subfamily of the continuous dual Hahn polynomials. Properties regarding bounds and asymptotics are also established with respect to these parameters. Criteria for knowing when the zeros of the (Sobolev) orthogonal polynomials and also the zeros of their derivatives stay within the unit disk have also been addressed. By numerical experiments some further information on the parameters is also found so that the zeros remain within the unit disk. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-01 2022-04-29T08:29:43Z 2022-04-29T08:29:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jat.2021.105604 Journal of Approximation Theory, v. 268. 1096-0430 0021-9045 http://hdl.handle.net/11449/228998 10.1016/j.jat.2021.105604 2-s2.0-85108259358 |
url |
http://dx.doi.org/10.1016/j.jat.2021.105604 http://hdl.handle.net/11449/228998 |
identifier_str_mv |
Journal of Approximation Theory, v. 268. 1096-0430 0021-9045 10.1016/j.jat.2021.105604 2-s2.0-85108259358 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Approximation Theory |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129578118414336 |