Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach

Detalhes bibliográficos
Autor(a) principal: Deluno Garcia, Fernando [UNESP]
Data de Publicação: 2020
Outros Autores: Angelino De Souza, Wesley, Pinhabel Marafao, Fernando [UNESP]
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TLA.2020.9085291
http://hdl.handle.net/11449/201750
Resumo: This paper presents an embedded NILM engine to enable load disaggregation intelligence and explore its potential application as an energy management system. In this sense, the power meter is upgraded to a novel category called cognitive power meter. Therefore, this paper discloses a heterogeneous multiprocessing approach to attend NILM prerequisites and increase household interactivity. The proposed NILM performs the microscopic analysis using the Conservative Power Theory (CPT) for feature extraction; k-Nearest Neighbors (k-NN) for the appliance classification; and the Power Signature Blob (PSB) for energy disaggregation. Results show NILM can be performed on-site, embedded into modern cognitive power meters, and it may support households on providing valuable information concerning appliances' usage for energy management systems.
id UNSP_bf35e56456c97d9887888615d6d58283
oai_identifier_str oai:repositorio.unesp.br:11449/201750
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Embedded NILM as Home Energy Management System: A Heterogeneous Computing ApproachCognitive meterenergy managementenergy meterNILMsmart meteringThis paper presents an embedded NILM engine to enable load disaggregation intelligence and explore its potential application as an energy management system. In this sense, the power meter is upgraded to a novel category called cognitive power meter. Therefore, this paper discloses a heterogeneous multiprocessing approach to attend NILM prerequisites and increase household interactivity. The proposed NILM performs the microscopic analysis using the Conservative Power Theory (CPT) for feature extraction; k-Nearest Neighbors (k-NN) for the appliance classification; and the Power Signature Blob (PSB) for energy disaggregation. Results show NILM can be performed on-site, embedded into modern cognitive power meters, and it may support households on providing valuable information concerning appliances' usage for energy management systems.Institute of Science and Technology of Sorocaba São Paulo State University (UNESP)Department of Computer Science Federal University of São Carlos (UFSCar)Institute of Science and Technology of Sorocaba São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Deluno Garcia, Fernando [UNESP]Angelino De Souza, WesleyPinhabel Marafao, Fernando [UNESP]2020-12-12T02:40:51Z2020-12-12T02:40:51Z2020-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article360-367http://dx.doi.org/10.1109/TLA.2020.9085291IEEE Latin America Transactions, v. 18, n. 2, p. 360-367, 2020.1548-0992http://hdl.handle.net/11449/20175010.1109/TLA.2020.90852912-s2.0-85084603719Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactionsinfo:eu-repo/semantics/openAccess2021-10-22T21:15:51Zoai:repositorio.unesp.br:11449/201750Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:49:49.222273Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
title Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
spellingShingle Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
Deluno Garcia, Fernando [UNESP]
Cognitive meter
energy management
energy meter
NILM
smart metering
title_short Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
title_full Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
title_fullStr Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
title_full_unstemmed Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
title_sort Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
author Deluno Garcia, Fernando [UNESP]
author_facet Deluno Garcia, Fernando [UNESP]
Angelino De Souza, Wesley
Pinhabel Marafao, Fernando [UNESP]
author_role author
author2 Angelino De Souza, Wesley
Pinhabel Marafao, Fernando [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Deluno Garcia, Fernando [UNESP]
Angelino De Souza, Wesley
Pinhabel Marafao, Fernando [UNESP]
dc.subject.por.fl_str_mv Cognitive meter
energy management
energy meter
NILM
smart metering
topic Cognitive meter
energy management
energy meter
NILM
smart metering
description This paper presents an embedded NILM engine to enable load disaggregation intelligence and explore its potential application as an energy management system. In this sense, the power meter is upgraded to a novel category called cognitive power meter. Therefore, this paper discloses a heterogeneous multiprocessing approach to attend NILM prerequisites and increase household interactivity. The proposed NILM performs the microscopic analysis using the Conservative Power Theory (CPT) for feature extraction; k-Nearest Neighbors (k-NN) for the appliance classification; and the Power Signature Blob (PSB) for energy disaggregation. Results show NILM can be performed on-site, embedded into modern cognitive power meters, and it may support households on providing valuable information concerning appliances' usage for energy management systems.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:40:51Z
2020-12-12T02:40:51Z
2020-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TLA.2020.9085291
IEEE Latin America Transactions, v. 18, n. 2, p. 360-367, 2020.
1548-0992
http://hdl.handle.net/11449/201750
10.1109/TLA.2020.9085291
2-s2.0-85084603719
url http://dx.doi.org/10.1109/TLA.2020.9085291
http://hdl.handle.net/11449/201750
identifier_str_mv IEEE Latin America Transactions, v. 18, n. 2, p. 360-367, 2020.
1548-0992
10.1109/TLA.2020.9085291
2-s2.0-85084603719
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv IEEE Latin America Transactions
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 360-367
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128422768017408