Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TLA.2020.9085291 http://hdl.handle.net/11449/201750 |
Resumo: | This paper presents an embedded NILM engine to enable load disaggregation intelligence and explore its potential application as an energy management system. In this sense, the power meter is upgraded to a novel category called cognitive power meter. Therefore, this paper discloses a heterogeneous multiprocessing approach to attend NILM prerequisites and increase household interactivity. The proposed NILM performs the microscopic analysis using the Conservative Power Theory (CPT) for feature extraction; k-Nearest Neighbors (k-NN) for the appliance classification; and the Power Signature Blob (PSB) for energy disaggregation. Results show NILM can be performed on-site, embedded into modern cognitive power meters, and it may support households on providing valuable information concerning appliances' usage for energy management systems. |
id |
UNSP_bf35e56456c97d9887888615d6d58283 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201750 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing ApproachCognitive meterenergy managementenergy meterNILMsmart meteringThis paper presents an embedded NILM engine to enable load disaggregation intelligence and explore its potential application as an energy management system. In this sense, the power meter is upgraded to a novel category called cognitive power meter. Therefore, this paper discloses a heterogeneous multiprocessing approach to attend NILM prerequisites and increase household interactivity. The proposed NILM performs the microscopic analysis using the Conservative Power Theory (CPT) for feature extraction; k-Nearest Neighbors (k-NN) for the appliance classification; and the Power Signature Blob (PSB) for energy disaggregation. Results show NILM can be performed on-site, embedded into modern cognitive power meters, and it may support households on providing valuable information concerning appliances' usage for energy management systems.Institute of Science and Technology of Sorocaba São Paulo State University (UNESP)Department of Computer Science Federal University of São Carlos (UFSCar)Institute of Science and Technology of Sorocaba São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Deluno Garcia, Fernando [UNESP]Angelino De Souza, WesleyPinhabel Marafao, Fernando [UNESP]2020-12-12T02:40:51Z2020-12-12T02:40:51Z2020-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article360-367http://dx.doi.org/10.1109/TLA.2020.9085291IEEE Latin America Transactions, v. 18, n. 2, p. 360-367, 2020.1548-0992http://hdl.handle.net/11449/20175010.1109/TLA.2020.90852912-s2.0-85084603719Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporIEEE Latin America Transactionsinfo:eu-repo/semantics/openAccess2021-10-22T21:15:51Zoai:repositorio.unesp.br:11449/201750Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:49:49.222273Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach |
title |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach |
spellingShingle |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach Deluno Garcia, Fernando [UNESP] Cognitive meter energy management energy meter NILM smart metering |
title_short |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach |
title_full |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach |
title_fullStr |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach |
title_full_unstemmed |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach |
title_sort |
Embedded NILM as Home Energy Management System: A Heterogeneous Computing Approach |
author |
Deluno Garcia, Fernando [UNESP] |
author_facet |
Deluno Garcia, Fernando [UNESP] Angelino De Souza, Wesley Pinhabel Marafao, Fernando [UNESP] |
author_role |
author |
author2 |
Angelino De Souza, Wesley Pinhabel Marafao, Fernando [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Carlos (UFSCar) |
dc.contributor.author.fl_str_mv |
Deluno Garcia, Fernando [UNESP] Angelino De Souza, Wesley Pinhabel Marafao, Fernando [UNESP] |
dc.subject.por.fl_str_mv |
Cognitive meter energy management energy meter NILM smart metering |
topic |
Cognitive meter energy management energy meter NILM smart metering |
description |
This paper presents an embedded NILM engine to enable load disaggregation intelligence and explore its potential application as an energy management system. In this sense, the power meter is upgraded to a novel category called cognitive power meter. Therefore, this paper discloses a heterogeneous multiprocessing approach to attend NILM prerequisites and increase household interactivity. The proposed NILM performs the microscopic analysis using the Conservative Power Theory (CPT) for feature extraction; k-Nearest Neighbors (k-NN) for the appliance classification; and the Power Signature Blob (PSB) for energy disaggregation. Results show NILM can be performed on-site, embedded into modern cognitive power meters, and it may support households on providing valuable information concerning appliances' usage for energy management systems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:40:51Z 2020-12-12T02:40:51Z 2020-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TLA.2020.9085291 IEEE Latin America Transactions, v. 18, n. 2, p. 360-367, 2020. 1548-0992 http://hdl.handle.net/11449/201750 10.1109/TLA.2020.9085291 2-s2.0-85084603719 |
url |
http://dx.doi.org/10.1109/TLA.2020.9085291 http://hdl.handle.net/11449/201750 |
identifier_str_mv |
IEEE Latin America Transactions, v. 18, n. 2, p. 360-367, 2020. 1548-0992 10.1109/TLA.2020.9085291 2-s2.0-85084603719 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
IEEE Latin America Transactions |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
360-367 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128422768017408 |